ESCOLA POLITECNICA DA UNIVERSIDADE DE SAO PAULO

RICARDO CASCIATO CARLINI

APLICACAO DAS REDES NEURAIS ADAPTATIVAS NA PREVISAO
DAS CURVAS TENSAO DEFORMAGCAO DE ACOS

Sao Paulo
2008



RICARDO CASCIATO CARLINI

APLICACAO DAS REDES NEURAIS ADAPTATIVAS NA PREVISAO
DAS CURVAS TENSAO DEFORMACAO DE AGCOS

Trabalho de Formatura apresentado a
Escola Politécnica da Universidade de

Séao Paulo

Area de concentragdo: Engenharia
Metalurgica

Orientador: Prof. Dr. Ronald Lesley
Plaut.

Séo Paulo
2008



AGRADECIMENTOS

Ao Prof. Dr. Ronald Lesley Plaut, pela oportunidade e orientagdo na realizagéo
desse trabalho.

Aos amigos e em especial ao Daniel “Eek” Bae, pela ajuda para a concluséo do
trabalho.
A Pamela, por ter me apoiado em todos os momentos que precisei.

E a todos que colaboraram direta ou indiretamente para a execugéo desse trabalho.



RESUMO

Com o avango tecnoldgico na fabricagdo de metais, foram surgindo
necessidades de maior controle das variaveis na conformagdo do material, como
tensao, deformacéo, taxa de deformacio e temperatura. Uma maneira de controlar

essas variaveis é através de programas computadorizados.

Assim, este trabalho apresenta o programa NeuroSolutions,, uma ferramenta
para desenvolver redes neurais adaptativas, explicando inicialmente suas fungbes e
aplicando as redes desenvolvidas em diferentes agos e em diferentes condigbes, de

acordo com os dados fornecidos pela literatura técnica.
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1. INTRODUCAO

Este trabalho de formatura, requisito fundamental para a conclusdo do curso de
Engenharia Metalurgica da Escola politécnica da Universidade de S&ao Paulo
(EPUSP), apresenta um estudo sobre redes neurais adaptativas e, mais
especificamente, sobre o programa NeuroSolutions, através de aplicagbes em acos
de diferentes tipos.

O trabalho se apoiou em artigos publicados sobre o assunto e na versdo

shareware de programa de redes neurais adaptativas.
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2. OBJETIVOS

O objetivo desse trabalho é obter a previsdo do comportamento de agos com
diferentes condigbes de temperatura, deformacao e taxa de deformagéo, através do

uso de redes neurais adaptativas, a partir dos dados disponiveis na literatura
técnica.
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3. ARTIGOS PUBLICADOS E FONTES DE DADOS

Este trabalho serd desenvolvido com base nos dados obtidos nos artigos
publicados no Journal os Materials Technology por P. D. Hodgson, L. X. Kong, C. H.
J. Davies e D. C. Collison nos anos de 1999 e 2000 [1][2].

Os estudos mostram a previsdo da deformag&o a quente em agos com o uso
de um modelo de rede neural adaptativa. Em ambos os casos as previsdes sdo
feitas usando os dados de temperatura, tensdo e deformacg@o, método denominado
ANN (Adaptative Neural Network) no artigo, e comparados com previsdes que
também levam em consideracio, nos dados de entrada da rede, o coeficiente de
correlagao de Pearson, cujo resultado € a inclinagdo da reta tangente a curva tenso

x deformagdo e € denominado IPANN (Integrated Phenominological Adaptative
Neural Network)

O artigo de 1999 fez a anélise de uma ago inoxidavel 304 comercial, enquanto

0 artigo de 2000 analisou uma ago carbono austenitico, contendo 0,79% de carbono
em peso.

Como resultados os estudos mostram um significativo aumento na precisdo

da RNA com o uso da inclinagéo da reta tangente sendo adicionado nos dados de
entrada.

Os Artigos se encontram nos anexos 5 e 6.
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4. REDES NEURAIS ADAPTATIVAS (RNA).

O presente capitulo visa explicar sucintamente o conceito de Redes Neurais
Adaptativas (RNA), mostrando sua origem, principais modelos utilizados e
aplicagdes.

4.1 INTRODUCAO AS REDES NEURAIS

As redes neurais artificiais consistem em um método de solucionar
problemas, usando inteligéncia artificial, construindo um sistema que tenha circuitos
que simulem o cérebro humano, inclusive seu comportamento, ou seja, aprendendo,
errando e fazendo descobertas, em um modelo inspirado na estrutura neural de
organismos inteligentes e que adquirem conhecimento através de fungbes
matematicas.

Uma rede neural artificial €& composta por varias unidades de
processamentos, cujo funcionamento ¢é bastante simples. Estas unidades
geralmente s@o conectadas por canais de comunicagcdo que estdo associados a
determinado peso. As unidades fazem operagfes apenas sobre seus dados locais,
que sdo entradas recebidas pelas suas conexdes. O comportamento inteligente de
uma Rede Neutral Artificial vem das interagdes entre as unidades de processamento
da rede.[3]

4.2 OPERACAO DE UMA REDE

De forma geral, a operagéo de uma célula da rede se resume em:

- Dados sao apresentados a entrada;
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- Cada dado é multiplicado por um peso que indica sua influéncia na saida da
unidade;
- E feita a soma ponderada dos dados que produz um nivel de atividade;

- Se este nivel excede um limite (threshold) a unidade produz uma saida.[3]

4.3 O NEURONIO ARTIFICIAL E A REDE NEURAL

Assim como o sistema nervoso, composto por bilhdes de células nervosas,
que ¢ a sede da inteligéncia, o lugar onde se formam as idéias e do qual partem as
ordens para a execug¢édo de movimentos e regulacdo de fungdes e estimulos, a rede
neural artificial é formada por pequenos modulos, ou objetos, que simulam o
funcionamento de um neurénio. Estes médulos devem funcionar de acordo com os
elementos em que foram inspirados, recebendo e retransmitindo, e gerando
informagées.[3] |
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4.3.1 O NEURONIO ARTIFICIAL

Atualmente, o modelo mais utilizado para explicar o funcionamento de uma
rede neural € o do fisiologista Warrem MacCulloch. Ele interpretou o funcionamento
do neur6nio biolégico como sendo um circulo de entradas binarias combinadas por

uma soma ponderada (com pesos) produzindo uma entrada efetiva:

I L

Figura 4.1 - Modelo de MacCulloch e Pitts

No modelo geral de neurbnios (fig. 4.1) as entradas WiUi s3o combinadas
rebatendo em uma fungéo F, para produzir um estado de ativacdo do neurdnio. As
entradas chegam através dos dentritos, que sdo receptores dos estimulos
transmitidos por outros neurdnios, e tem um peso atribuido pala sinapse, que séo
jungées interneurais.[3].
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A fungao basica de um neurdnio é somar as entradas e retornar uma saida,

como mostra a figura 4.2.

w
u, L
W \
u - 2 Ay
| W — B
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i} n {

Figura 4.2 — Esquema de um neurbnio artificial

4.4 A REDE NEURAL ADAPTATIVA (MULTILAYER PERCEPTRON)

A rede neural adaptativa € um sistema de neurbnios ligados por conexdes
sinapticas e dividido em neurdnios de entrada, que recebem estimulos do meio
externo, neurdnios internos, que efetuam todo processo de classificacdo e

ponderac&o dos estimulos, e neurdnios de saida, que se comunicam com o exterior.

Existem varias formas de mostrar essa rede, mas a mais utilizada é a de
Multilayer Perceptron, que foi concebida para resolver problemas mais complexos,
0s quais n&o poderiam ser resolvidos pelo modelo de neurdnio basico. Um dnico
perceptron ou uma combinacdo das saidas de alguns percetrons poderia realizar
uma operacéo, porém, seria incapaz de aprendé-la. Para isto s&o necessarias mais
conexdes, as quais sd existem em uma rede de percetrons dispostos em camadas,
como mostra a figura 4.3, dessa forma os neurbnios intemos sdo de suma

importancia na rede neural, pois se provou que se torna impossivel a resolucio de
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problemas lineares ndo separaveis, ja que quanto mais camadas a rede possuir,
mais trabalhado sera o resultado de saida da rede.

Assim pode-se dizer que uma rede é composta por vérias unidades de
processamento. Essas unidades, geralmente sdo conectadas por canais de
comunicagdo que estdo associados a determinado peso. As unidades fazem
operagdes apenas sobre seus dados locais, que sdo entradas recebidas pelas suas
conexdes. A inteligéncia da Rede Neural Artificial vem das interagbes entre as
unidades de processamento da rede.

Figura 4.3 — Organizagd0 em camadas

A maioria dos modelos de redes neutrais possui alguma regra de treinamento,
onde o0s pesos e suas conexdo sdo ajustados de acordo com os padrées
apresentados, aprendendo de acordo com os exemplos apresentados. Arquiteturas
neurais sao tipicamente organizadas em camadas, com unidades que podem estar
conectadas as unidades da camada posterior.

A rede neural passa por um processo de treinamento a partir dos casos reais
conhecidos, adquirindo, a partir dai, a sisteméatica necessaria para executar
adequadamente o processo desejado dos dados fomecidos. Entdo a rede neural é
capaz de extrair regras basicas a partir de dados reais, diferindo da computacdo
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programada, onde €& necessario um conjunto de regras rigidas pré-fixadas e
algoritmos.[4]

Usualmente as camadas sao classificadas em trés grupos:

-Camada de Entrada: onde os padrdes s&o apresentados a rede;

-Camadas Intermedidrias ou Ocultas: onde feita a maior parte do
processamento, através das conexdes ponderadas, podem ser consideradas como
extratoras e caracteristicas;

-Camada de Saida: onde o resultado final é concluido e apresentado.

De acordo com a arquitetura da rede neural, existe uma classificacdo
conforme implementag&o, topologia, caracteristicas de seus nods, regras de

treinamento e tipos de modelos.

4.5 DESENVOLVIMENTO DE APLICACOES

Existem certos procedimentos para a construcdo de uma rede neural

consistente:

4.5.1 COLETA DE DADOS E SEPARACAO EM CONJUNTOS

Os dois primeiros passos do processo para o desenvolvimento de redes
neurais artificiais sdo de suma importancia para diminuir a probabilidade de erros do
sistema: a coleta de dados relativos ao problema; e a sua separagdo em um
conjunto de treinamento, um conjunto de avaliagdo e um conjunto de testes. Esta
tarefa requer uma analise cuidadosa sobre o problema para minimizar ambiguidades

e erros nos dados.
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Além disso, os dados coletados devem ser significativos e cobrir amplamente
o dominio do problema; devem cobrir opera¢des normais ou rotineiras, excegoes e

as condig¢des nos limites do dominio do problema.

Normalmente, os dados coletados sdo divididos em trés categorias: dados de
treinamento, usados para o treinamento da rede, dados de validagdo, utilizados para
verificar a eficiéncia da rede quando a sua capacidade de generalizag&o durante o
treinamento, e podendo ser empregado como critério de parada do treinamento, e
dados de teste, utilizados para verificar sua performance sob condi¢cbes reais de

utilizacao.

Geralmente, os dados sdo colocados em ordem aleatéria para prevencao de
tendéncias associadas a ordem de apresentagdo dos dados. E recomendavel, se
necessario, pré-processar estes dados, através de normalizagoes, escalonamento e

conversdes de formato para toma-los mais apropriados & sua utilizago na rede.

4.5.2 CONFIGURAGAO DA REDE

O terceiro passo ¢ a definicdo da configuracdo da rede, que pode ser dividido
em trés etapas:

-Seleg&o do paradigma neutral apropriado & aplicagao;

-Determinag&o da topologia da rede a ser utilizada — 0 numero camadas, o
numero de unidades em cada camada, etc.

-Determinagéo de pardmetros do algoritmo de treinamento e funcdo de

ativaggo. Este passo tem um grande impacto na performance do sistema resultante.

4.5.3. TREINAMENTO

O quarto passo é o treinamento da rede. Nesta fase, segundo o algoritmo de

treinamento escolhido, serdo ajustados os pesos das conexdes. E importante
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considerar, nesta fase, alguns aspectos tais como a inicializagao de redes, o modo
de treinamento e o tempo de treinamento.

Uma boa escolha dos valores iniciais dos pesos da rede pode diminuir o
tempo necessario para o treinamento. Normalmente, os valores iniciais dos pesos da
rede sdo niumeros aleatérios uniformemente distribuidos, em um intervalo definido. A

escolha errada destes pesos pode levar a uma saturagao prematura.

Para achar o melhor peso de cada conexao as redes utilizam um gréafico que

relaciona os pesos com o erro, objetivando atingir o ponto de minimo do grafico,
como na figura 4.4

LMS
Erro
quadatico hiperparaboldide
médio

Minimo Global

Vetor Peso
Atual

Vetor Peso
Peso X Ideal

Figura 4.4 — Relag3o erro x pesos

Quanto ao medo de treinamento, na pratica € mais utilizado o modo padrao
devido ao menor armazenamento de dados, alem de ser menos suscetivel ao

problema de minimos locais, devido a pesquisa de natureza estocastica que realiza.
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Por outro lado, no modo “batch” se tem uma melhor estimativa do vetor gradiente, o
que torna o treinamento mais estavel. A eficiéncia relativa dos dois modos de

treinamento depende do problema que esta sendo tratado[4].

Quanto ao tempo de treinamento, varios fatores podem influenciar a sua
duracdo, porém sempre sera necessario utilizar algum critério de parada.
Normalmente, o critério de parada utilizado é um numero maximo de ciclos. Mas,
devem ser considerados a taxa de erro médio por ciclo, e a capacidade de
generalizagdo da rede. Pode ocorrer que em um determinado instante do
treinamento a rede comece a degenerar, causando o problema de “over-training”, ou
seja, a rede se especializa em um conjunto de dados de treinamento e perde a

capacidade de generalizacdo[4].

O treinamento deve ser interrompido quando a rede apresentar uma boa
capacidade de generalizagdo e quando a taxa de erro for suficientemente pequena,
ou seja, menor que um erro admissivel. Assim, deve-se encontrar um ponto otimo de

parada com erro minimo e capacidade de generalizagdo maxima[4].

454 TESTE

O quinto passo € o teste da rede. Durante esta fase o conjunto de teste e
utilizado para determinar a performance da rede com dados que nao foram
previamente utilizados. A performance da rede, medida nesta fase, & uma boa

indicagdo de sua performance real.

Devem ser considerados ainda outros testes como andlise do comportamento
da rede utilizando entradas especiais e analise dos pesos atuais da rede, pois se
existirem valores muito pequenos, as conexdes associadas podem ser consideradas
insignificantes e assim serem eliminadas (prunning). De modo inverso, valores
substantivamente maiores que os outros poderiam indicar que houve over-training
da rede[4].
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455 INTEGRACAO DA REDE

Finalmente com a rede treinada e avaliada, ela pode ser integrada em um
sistema do ambiente operacional da aplicacdo. Alem disso, o sistema deve
periodicamente monitorar sua performance e fazer a manutengdo da rede quando

for necessario ou indicar a necessidade de re-treinamento[4].

Maiores detalhes podem ser encontrados no Anexo 1, com um passo a passo

para a montagem, treinamento e teste de uma rede no NeuroSolutions.

4.6. APLICACOES DE REDES NEURAIS ADAPTATIVAS

As aplicagdes das redes neurais s&o inumeras. A primeira introdugéo pode
ser vista em progndsticos de mercados financeiros. Grupos de investimento
conhecidos utilizam redes neurais para analisar parte do mercado financeiro e fazer
suas selegbes. Outras aplicagbes bem sucedidas das técnicas de redes neurais
artificiais s&o: controle de processos industriais, aplicagdes climaticas, e identificagao
de fraude de cartdes de crédito. Um caso famoso foi o Mellon Bank que instalou um
sistema de deteccdo de fraudes de cartdo de crédito implementado com técnicas de
rede neurais e os prejuizos evitados pelo novo sistema conseguiu cobrir os gastos
de instalagdo em seis meses. Varios outros bancos comegaram a utilizar sistemas
baseados em redes neurais para controlar fraudes de cartdo de crédito. Estes
sistemas tem a capacidade de reconhecer uso fraudulento com base nos padrbes

criados no passado com uma precisdo melhor que em outros sistemas[4].

Outro exemplo de utilizagdo de redes neurais para melhoria na tomada de
decisdes é no diagnostico médico. Em um aprendizado, sdo submetidos uma série
de diagnésticos de pacientes, de varias caracteristicas, com varios sintomas e 0s
resultados de seus testes. Também serdo fornecidos os diagndsticos médicos para

cada doenca. Entdo quando forem apresentados os dados de um novo paciente,
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com seus sintomas, a rede fornecera um diagnostico para os novos casos. Isto
essencialmente criara um sistema com o conhecimento de varios médicos e
fornecerd um diagnostico inicial em tempo real a um médico. E importante
mencionar que com isso 0 que se pretende € implantar uma ferramenta de auxilio ao

médico, e ndo um programa que o substitua[4].

Outras aplicagbes[4]:

- analise e processamento de sinais;

- controle de processos;

- robética;

- classificagao de dados;

- reconhecimento de padrdes em linhas de montagem;
- filtros contra ruidos eletrénicos;

- analise de imagens;

- analise de voz;

- avaliacdo de crédito;

- analise de aroma e odor

4.7 PROGRAMAS DISPONIVEIS / UTILIZADOS

- Neuroimitador V3.1 para Windows 3.1 da Neuroma-RD Ltd: Ferramenta que
permite a pesquisadores construir uma arquitetura arbitraria de rede neural e decidir

parametros de neurdnios envolvidos e conexdes sinapticas.

- NeuroSolutions V5.0: Um ambiente de simulagio orientado a objeto para redes
neurais para estudos de sistemas distribuidos complexos dificeis de serem
estudados apenas na teoria. Suas ferramentas de visualizagdo permitem que o
usudrio verifique o comportamento da rede sem que seja necessario esperar até o
fim de seu treinamento, alem de permitir que parametros sejam alterados durante a

execugao da mesma.
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- Matlab V4.0.6: Uma ferramenta que utiliza a interface gréafica para construir,

desenhar, visualizar, implementar e simular uma rede neural[5].

- Statistica: Ferramenta poderosa cuja principal fungdo é a selecdo do INTELLIGENT
PROBLEM SOLVERS, que usando métodos de inteligéncia artificial, permite
resolugdo de problemas com altissimo grau de exigéncia, envolvidos m analise
avangadas de Redes neurais, tais como selecionar a melhor arquitetura de redes,
melhor subconjunto de variaveis, etc[6].

No caso, utilizou-se o programa NeuroSolutions, para desenvolver a rede
neural adaptativa (NAP) utilizada.
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5. APRESENTACAO DAS PARTES DE UMA RNA [7]

Neste capitulo serdo apresentadas as partes que formam uma RNA. Essas
partes foram divididas em arquitetura, funcdo de transferéncia e método de
aprendizado.

Cada camada da rede possui camadas intermediarias. Essas camadas
requerem uma fungdo nédo linear para especificar o comportamento das camadas
intermediarias. Cada camada ainda necessita de métodos de aprendizado. Assim,
de acordo com as fungdes e métodos selecionados, sao definidos os pesos de cada

relacdo, que sdo continuamente mudados e corrigidos a cada treino.

Essa relagéo entre a arquitetura da rede, o método de aprendizado e a fungéo
de transferéncia é que define a velocidade de aprendizado da RNA. Se a taxa de
aprendizado € muito pequena, o aprendizado demora muito tempo. Por outro lado,

se o aprendizado é muito rapido os valores podem divergir

5.1 ARQUITETURA

As arquiteturas das redes serdo apresentadas resumidamente, com destaque
para suas vantagens e desvantagens e seu formato. Ser&o usados a fungao de
transferéncia TanhAxon e o método de aprendizado Momentum, que sao o padrao
do programa.

5.1.1 MULTILAYER PERCEPTRON (MLP)

Podemos observar em destaque na figura 5.1, posi¢des de entrada, a camada

intermedidria e a saida, mostrando uma configuragdo de uma rede linear. Também
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estdo em destaque a fungdo de transferéncia (TanhAxon) e o método de
aprendizado (Momentum), que serdo melhor explicados apés a apresentacao das
arquiteturas.

Mstodo de

Camada aprendizado Saida

intermedidria

Funcao de transferéncia

Figura 5.1 — Arquitetura da rede Multilayer Perceptron

A rede Multilayer Perceptron (MLP) utiliza mecanismo de feedforward,
treinada com retropropagacao (backpropagation). As principais vantagens dessa
arquitetura é ser facil de usar e poder ser usada para qualquer tipo de dados de
entrada e saida. As desvantagens sido a baixa velocidade de treinamento e a

necessidade de um nimero maior de treinos.

5.1.2 GENERALIZAD FEED FORWARD

TN ]

Figura 5.2 — Arquitetura de rede Generalized Feed Forward
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A Rede Generalized Feed Forward é uma generalizagao da rede MLP, com a
diferenca que as conexdes podem pular uma ou mais camadas intermediarias. E

esperado que essa rede resolva os problemas com maior eficiéncia, comparada a
rede MLP.

5.1.3 MODULAR NEURAL NETWORK

Figura 5.3 — Arquitetura da rede Modular Neural

Podemos ver, em destaque na figura 5.3, que a arquitetura da rede Modular
apresenta duas camadas intermediarias como padrao. Essa rede é um tipo especial
da Multilayer Perceptron. O processamento ¢ feito usando redes MLP em paralelo e
recombinando o resultado. Na teoria € esperado um aprendizado mais rapido,

reduzindo o tempo e o nimero de treinos necessarios.
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5.1.4 JORDAN / ELMAN NETWORK

MOM -

Jordan Network

Hman Network

Figura 5.4 — Arquitetura da rede Jordan/Elman Network

A rede Jordan e Elman é mais uma evolugdo da Multilayer Perceptron,
realimentando o sistema com mais de uma informagdo. A Eiman Network (em
destaque na figura 5.4) envia a informag&o da primeira camada intermediaria para a
entrada da rede, enquanto a Jordan Network envia os dados de saida, alimentando

a rede com dados intermediarios e de saida ao mesmo tempo.

5.1.5 PRINCIPAL COMPONENT ANALYSIS (PCA)

Figura 5.5 — Arquitetura da rede PCA
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A rede PCA consiste em uma analise prévia, achando dados sem relagao nos
valores de entrada (em destaque na figura 5.5), repassando os dados de entrada
previamente tratados para uma rede MLP.

5.1.6 RBF/GRNN/PNN NETWORK

Figura 5.6 — Arquitetura da rede RBF

A rede RBF (Radial Basis Function) € uma rede nao linear que contém
tipicamente apenas uma camada intermediaria e usa fungbdes de transferéncia
gaussianas ao invés das fungées sigmoidais padriao. E uma rede que, na teoria,
deve aprender muito mais rapido que uma rede MLP. Essa rede deve ser usada
quando ha um numero muito pequeno de dados, com menos de 100 exemplares.
Como nesse trabalho foram usado mais de 100 exemplares essa rede nao foi

utilizada.
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5.1.7 SELF ORGANIZING FEATURE MAP NETWORK

Figura 5.7 — Arquitetura da rede Self Organizing Feature Map

Assim como na rede PCA, a Self Organizing Feature Map Network (em
destaque na figura 5.7) faz um tratamento prévio dos dados de entrada para em
seguida alimentar uma rede MLP. Esse tratamento consiste em transformar os

dados de entrada em matrizes, reduzindo a dimensao dos dados de entrada.

5.1.8 TIME-LAG RECURRENT NETWORK (TLRN)

Figura 5.8 — Arquitetura da rede Time-Lag Recurret

A TLRN é uma rede do tipo MLP com a diferenga que essa rede guarda os
dados que estdo sendo realimentados na entrada (em destaque na figura 5.8) e

analisa como esses dados mudam com o tempo.
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5.1.9 RECURRET NETWORK

Figura 5.9 — Arquitetura da rede Recurret

A Recurrent Network re-alimenta os dados da camada intermediaria nela
mesma, funcionando como uma memodria entre os processamentos, comparando 0s

dados anteriores com os instantaneos.
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5.1.10 CANFIS NETWORK (FUZZY LOGIC)

Figura 5.10 — Arquitetura da rede CANFIS

A rede CANFIS (Co-Active Neuro-Fuzzy Inference System) é a unido de uma
rede de logica difusa (Fuzzy Logic) com uma rede modular, com o objetivo de

aproximar rapidamente e com preciséo fungdes complexas.

5.1.11 SUPPORT VECTOR MACHINE (SVM)

Figura 5.11 — Arquitetura da rede Support Vector Machine

A rede SVM trabalha criando um espago dimensional e separando os dados
por classes nesses espagos, isolando as entradas perto dos limites superiores e
inferiores. A SVM nao utiliza as fungbes de transferéncia e os métodos de
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aprendizado. Essa rede nao pode ser usada para aproximagées de funcdo e ndo

sera utilizada neste trabalho.

5.2 FUNCOES DE TRANSFERENCIA

Essa parte do trabalho vai explicar as diferentes fungbes de transferéncia
presentes no NeuroSolutions. As fungdes estdo identificadas por icones, que serdo

mostrados a seguir.

5.2.1 AXON
" 3
b

Figura 5.12 — icone Axon

A fungéo Axon simplesmente faz a ligacdo entre a entrada e a saida de
dados. E o primeiro membro da familia Axon e as fungdes subseqilientes sdo as

subclasses dessa funcao.

Cada subclasse tera um icone (como o da figura 5.12) com um gréfico para sua
identificacdo na rede,

5.2.2 BIAS AXON

2

A

1|

Figura 5.13 — cone Bias Axon

A Bias Axon é uma fungdo que analisa a tendéncia dos valores, dando como
dados de saida os valores para os quais os dados de entrada estdo se
encaminhado.
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5.2.3 LINEAR AXON

e
]

Figura 5.14 — icone Linear Axon

A Linear Axon implementa uma funcéo linear e usa o gradiente dessa funcéo
para gerar o resultado.

5.2.4 SIGMOID AXON

e

Figura 5.15 — icone Sigmoid Axon

Essa funcdo é aplicada em cada neurbnio da camada, levando em conta
proporgdes entre os dados de entrada e saida e a tendéncia dos dados. Essas
proporgdes e tendéncias provém da Linear Axon. Os valores para cada neurdnio da

camada variam entre zero e um.

5.2.5 LINEAR SIGMOID AXON

Figura 5.16 — [cone Linear Sigmoid Axon

A Linear Sigmoid Axon substitui a parte intermediaria da Sigmoid Axon por
uma aproximagéo linear. Mas essa fungdo pode ser descontinua, s6 conseguindo
aprender quando é usada com a Back Sigmoid Axon. Por esse motivo essa funcéo

de transferéncia nao sera utilizada neste trabalho.



36

5.2.6 TANH AXON

S

Figura 5.17 — icone Tah Axon

A TanhAxon funciona aplicando uma fungdo de tendéncia e outra de
Tangente Hiperbdlica em cada neurénio da camada. Com isso o valor do peso de

cada neur6nio na camada aumenta, variando entre -1 e 1.

5.2.7 LINEAR TANH AXON

Figura 5.18 — icone Linear Tanh Axon

Assim como a LinearSigmoidAxon essa fung&o substitui a parte intermediaria
da tangente hiperbdlica por uma funcdo linear. E uma fungdo que também nao é
indicada para aprendizado, necessitando do uso da BackTanhAxon para poder

aprender. Portanto essa fungdo ndo sera utilizada.
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5.2.8 SOFT MAX AXON

=

Figura 5.19 — icone Soft Max Axon

E uma fungdo que interpreta os dados de saida como uma probabilidade,
usando em seguida uma fungdo de densidade de probabilidade para selecionar os
melhores valores.

5.3 METODOS DE APRENDIZADO

Assim como feito para as fungdes de transferéncia, serdo mostrados os

métodos de aprendizado disponiveis no NeuroSolutions.
5.3.1 CONJUGATE GRADIENT

O Conjugate Gradient & um método de segunda ordem, ou seja, usa a
segunda derivada da curva que relaciona os pesos com os erros, achando o ponto
de minimo da curva (matriz Hessiana), tendendo a uma convergéncia muito mais
rapida. O problema é que cada passo dado por esse algoritmo exige muito do
computador e caso n&o exista uma concavidade com minimo, da curva pesos x erro,
0 algoritmo pode divergir.
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5.3.2 LEVENBERG MARQUARDT (LM)

O método LM é chamado método de pseuda segunda ordem pois aproxima a
matriz Hessiana, utilizando uma aproximagdo de Gauss-Newton, que mantém a
matriz Jacobiana e descarta as derivadas de segunda ordem do erro. A principal
vantagem em relagéo as fungbes de segunda ordem é que mesmo que a curvatura
nao seja parabdlica ocorre uma aproximacao.

5.3.3 STEP

O meétodo Step procura o ponto de minimo de acordo com a informacéao do
gradiente da curva, dando passos com valores pré-definidos em diregdo ao lado
decrescente da curva pesos x erro. O problema é o pequeno tamanho dos passos,
demorando muito para atingir boa precis&o. Caso o passo pré-definido seja muito
grande pode ocorrer divergéncia.

5.3.4 DELTA BAR DELTA

Este algoritmo € uma melhoria do Step. O método analisa os pesos e erros
das camadas intermedidrias, se 0s pesos correntes e passados tem 0 mesmo sinal
(positivo ou negativo) o algoritmo segue no mesmo sentido, aumentando o tamanho
do passo linearmente. Caso sejam encontrados sinais opostos o método toma o

caminho contrério, diminuindo o tamanho do passo para ndo ocorrer divergéncia.
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5.3.5 MOMENTUM

O meétodo se comporta como o Step, seguindo no caminho onde o gradiente
da curva pesos x erro decresce, mas agora com um fator de inércia p. Quanto maior
o valor de p, menos a mudanga no valor do gradiente afeta a mudanga nos pesos. O

maior beneficio é a habilidade de frear o algoritmo no local de minimo.

5.3.6 QUICKPROP

E um algoritmo que usa o gradiente e a derivada de segunda ordem em
conjunto para acelerar a convergéncia.
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6. APLICACAO DAS REDES NEURAIS ADAPTATIVAS

Com as informagbes do Anexo 1, sobre como montar uma rede no
NeuroSolutions e conhecendo as arquiteturas, fungdes de transferéncia e métodos
de aprendizado disponiveis, foram aplicadas diferentes redes para os dados da
tabela do anexo 2, do ago inoxidavel 304. Comparando os valores de r encontrados
e o formato dos gréficos, foram selecionadas as configuragées que obtiveram os
melhores resultados. As configuragbes que obtiveram resuitados ruins foram
descartadas.

N&o foram utilizados os dados das inclinagdes das retas tangentes das curvas
tensdo x deformagd&o no momento. Esse dado sera usado posteriormente para

comparacao com os dados da literatura.

6.1 APLICACAO MULTILAYER PERCEPTRON

Comegamos os testes com a rede Multilayer Perceptron, que é a rede padréo
do programa NeuroSolutions, mantendo o namero de sub-camadas igual a um e
1000 ciclos de treinos (também valores padrédo). Esses valores sdo os mesmos para
todas as redes testadas nessa primeira fase. Foram alterados as funcgbes de
transferéncia e os métodos de aprendizado buscando o melhor resultado de r e dos
graficos.

Os resultados de r seguem na tabela 6.1.



Tabela 6.1 — Valor de r para a rede Multilayer Perceptron

Tranfer\Learnig Step Momentum ConjugateGradient
TanhAxon 0,605118247 | 0,562501571 0,534459768
SigmoidAxon 0,566110516 | -0,53244766 -0,012527556
SoftMaxAxon 2,7153E-16 2,7153E-16 2,7153E-16
BiasAxon 0,599069633 | -0,71717363 0,75093956
LinearAxon 0,715773325 | 0,648142832

Axon -0,44214352 | 0,742913629

Tranfer\Leamig | LevenbergMaquardt| Quickprop DeltaBarDelta
TanhAxon 0,561627286 0,60724158 | 0,592986509
SigmoidAxon 0,575167524

SoftMaxAxon 2,7153E-16

BiasAxon -0,029705911 0,68002135 | 0,579530515
LinearAxon 0,61910212 | 0,258017638
Axon 0,75375664
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Analisando os graficos foi visto que algumas fungdes de transferéncia ndo se

comportavam da maneira esperada, gerando um grafico praticamente linear. Como

pode ser visto nos graficos a seguir.
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Grafico 6.1 — Resultado Sigmoid Axion / Step
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Gréfico 6.2 — Resultado Sigmoid Axon / Momentum

Vemos nos gréficos 6.1 e 6.2 que a fungdo de transferéncia Sigmoid Axon

ndo consegue boa aproximagio para os dados da tabela, portanto sera descartada.



400T

300 -

150
100 -

T
%
<_
s
\\
e

50 N

0 e S T
123 456 7 8 9 10111213 14 1516 17 18
Exemplar

Desired Output and Actual Network Output

~——Tensdo (Mpa)
| SRR Tensao (Mpa) Output

Gréfico 6.3 — Resultado Soft Max Axon / Momentum
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A funcdo Soft Max Axon também n&o se comportou de maneira adequada,

como pode ser visto no grafico 6.3, e foi descartada.
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Gréfico 6.4 — Resultado Linear Axon / Momentum

Mais uma funcgao, a Linear Axon, foi descartada, devido a diferenc¢a do grafico
com valores reais e o simulado, observado no gréafico 6.4.
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Gréfico 6.5 — Resultado Axon / Step
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E por ultimo a fungdo Axon, que também n&o vai seguir sendo testada por

apresentar um grafico, 6.5, que ndo corresponde a realidade.

O tipo de grafico esperado para essas configuragdes é como o do grafico 6.6.
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Grafico 6.6 — Tanh Axon / Momentum
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Também ocorreram problemas com os métodos de aprendizado

ConjugateGradient e Levenberg Marquardt, como visto nos gréficos 6.7 e 6.8.
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Grafico 6.7 — Resultado Conjugate Gradient / Step
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Gréfico 6.8 — Resultado Levenberg Marquardt / Momentum

Assim foram descartadas essas quatro fun¢des de transferéncia e os dois

métodos de aprendizado.



47

6.2 APLICACAO GENERALIZED FEED FORWARD

Seguindo a seqliéncia das redes, foi testada a rede Generalized Feed
Foward, seguindo os mesmos métodos da rede anterior. Os resultados obtidos

foram os da tabela 6.2.

Tabela 6.2 — Valor de r para Generalized Feed Forward

Tranfer\Learnig Step Momentum Quickprop DeltaBarDelta
TanhAxon 0,759442536 0,5661899 0,732272923 0,563611338
BiasAxon 0,701757268 0,736694824 0,717351913 -0,186387744

As fungbes de transferéncia e os métodos de aprendizado apresentaram
resultados proximos para esse tipo de rede neural. Ha apenas um valor muito baixo
da fungéo BiasAxon, para o método DeltaBarDelta, mas como a aproximag&o para a

fungdo TanhAxon foi melhor, esse método sera mantido para os préximos testes.
Como os graficos seguiram o padrdo desejado, ndo foi excluida nenhuma
configuragao.

6.3 APLICACAO MODULAR NEURAL NETWORK.

A terceira rede testada foi a Modular Neural Network. Com ela foram obtidos

0s resultados da tabela 6.3.



Tabela 6.3 — Valor de r para Modular Neural

Tranfer\Learnig | Step Momentum Quickprop DeltaBarDelta
TanhAxon 0,75757466 |0,67026208 -0,73940667 |0,571970927
BiasAxon -0,64487333 | -0,44555012 [0,12749812 -0,09264112
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Houve grandes variagbes do valor de r e nos graficos e essa arquitetura ndo

forneceu um retorno confiavel para a avaliagdo das fungdes de transferéncia e

metodos de aprendizado, portanto ndo foram eliminadas nenhuma fungdo e nenhum

método.

Como alguns valores de r foram mais altos, comparados as redes testadas

até agora, essa arquitetura sera testada mais adiante com o uso da inclinacdo da

reta tangente.

6.4 APLICAGCAO JORDAN / ELMAN NETWORK

Como mostra a tabela 6.4, foram encontrados valores baixos de r para 0s
métodos Step e Quickprop.

Tabela 6.4 — Valor de r para Jordan / Elman

Tranfer\Leamig | Step Momentum | Quickprop |DeltaBarDelta
TanhAxon 0,124256097 | 0,587677202 | 0,18310615 | 0,575744178
BiasAxon 0,300254745 | -0,03545832 | 0,25358068 | 0,243095555

Alem do baixo valor de r, os graficos gerados para esses métodos fugiram

dos valores reais, como pade ser visto, por exemplo, no grafico 6.9.
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Gréfico 6.9 — Resultado Tanh Axon / Quickprop

Por esse motivo, os métodos de aprendizado Step e Quickprop foram

eliminados, seguindo apenas os métodos Momentum e DeltaBarDelta como os de
melhor aproximacao até o momento.

Como sobraram apenas dois métodos e duas fungdes, eles serdo testados
até o fim para todas as arquiteturas, supondo que esses sdo as melhores

configuragbes para as redes. Se mesmo com essas configuragdes a arquitetura
apresentar valores ruins, ela serd descartada.

49



50

6.5 APLICACAO PRINCIPAL COMPONENT ANALYSIS (PCA)

A rede PCA apresentou valores de r muito proximos, apenas o valor da
fungdo Tanh Axon, (tabela 6.5) com o método Deilta Bar Delta, foi ruim. Mas como foi

s0 esse valor que divergiu dos demais, a arquitetura sera mantida.

Tabela 6.5 ~ Valor de r para PCA

Tranfer\Leamig Momentum DeltaBarDelta
TanhAxon 0,583176255 -0,120043772
BiasAxon 0,459626625 0,583871884

6.6 APLICACAO SELF ORGANIZING FEATURE MAP NETWORK

Essa arquitetura teve fraco desempenho com o método Delta Bar Delta, mas
como o método Momentum apresentou valores razoaveis (tabela 6.6), a rede sera

mantida.

Tabela 6.6 — Valor de r para Self Organizing

Tranfer\Leamnig | Momentum | DeltaBarDelta
TanhAxon 0,49948612 | 0,174983307
BiasAxon 0,46385339 | 0,185425594

6.7 APLICAGAO TIME-LAG RECURRENT NETWORK

Como pode ser visto na tabela 6.7, os resultados dessa arquitetura foram

péssimos para todas as configuragdes. Portanto essa arquitetura esta descartada.



Tabela 6.7 —~ Valor de r para Time Lag Recurrent

[Tranfer\Learnig

Momentum | DeltaBarDelta

TanhAxon

-0,43424666 |-0,146067458

BiasAxon

-0,40140293 |-0,407630446

6.8 APLICACAO RECURRENT NETWORK
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Assim como a Self Organizing Feature Map, essa arquitetura apresentou

valores ruins de r para 0 método Delta Bar Delta, mas valores razoaveis para o

meéetodo Momentum e pelos mesmos motivos serd mantida.

Tabela 6.8 — Valor de r para Recurret Network

Tranfer\Learnig | Momentum | DeltaBarDelta
TanhAxon 0,55793591 | 0,132540479
BiasAxon 0,49547521 | -0,177640552

6.9 APLICACAO CANFIS NETWORK (FUZZY LOGIC)

Todas as configuragdes dessa arquitetura apresentaram resultados razoaveis

de r, portanto a arquitetura foi mantida.

Tabela 6.9 — Valor de r para CANFIS

Tranfer\Learnig Momentum | DeltaBarDelta
TanhAxon 0,573249865 | 0,558275412
BiasAxon 0,529059686 | 0,437228657




52

6.10 CONCLUSOES PARCIAIS

Com os resultados de todas as redes encontrados e discutidos, foram
definidas as melhores fungdes de transferéncia TanhAxon e BiasAxon e os melhores
métodos de aprendizado Momentum e DeltaBarDelta, que serdo as Unicas utilizadas

para as proximas aplicagbes com diferentes dados.

Como observado, a arquitetura Time-Lag Recurrent Network (tabela 6.7) ndo
apresentou resultado satisfatério e ndo serd mais utilizada daqui em diante,

seguindo as outras oito redes para methor analise com outros dados.
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7. USO DA INCLINACAO DA RETA TANGENTE NOS DADOS DE
ENTRADA.

Como visto na literatura[1][2], o uso da inclinagio da reta tangente como dado
de entrada melhora a precisdo da rede neural adaptativa e aumenta a velocidade de

seu aprendizado.

Para comprovar esse estudo, vamos utilizar as configuragdes que ndo foram
descartadas no capitulo 6 e aplica-las nos dados da tabela do anexo 2, mas agora

utilizando a informag&o da inclinagéo da reta tangente.

7.1 METODO PARA OBTER A INCLINACAO DA RETA.,

A inclinagdo da reta foi obtida tragando uma reta tangente ao ponto desejado
e a partir de um ponto da reta tangente calcular a variacdo de altura da reta em

fungao da distancia, dividindo H por C, como indicado na figura 7.1.

Figura 7.1 — inclinagdo positiva.
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Os valores da inclinagdo da reta podem ser negativos, caso a reta tangente
seja decrescente, como mostra a figura 7.2.

Figura 7.2 — inclinagio negativa

7.2 NOVA APLICAGAO DAS REDES NEURAIS ADAPTATIVAS

Possuindo os valores das inclinagdes das retas tangentes em maos (valores
que podem ser encontrados na tabela do anexo 3), prosseguimos com as
simulagbes feitas pelas redes neurais selecionadas no capitulo 6, mantendo o
mesmo padrao nas aplicagbes.

O resultado das aplicagbes pode ser visto na tabela 7.1, que compara os
dados de r obtidos com as redes utilizando a inclinagdo da reta tangente e sem a
inclinagdo da reta tangente. Observamos claramente uma grande melhora na
precisdo em quase todas as configuragdes com o uso da inclinagdo da reta

tangente.



Tabela 7.1 — Comparagdo de r com e sem o uso da inclinagéio da reta tangente
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Rede Tanh/Momentum Tanh/DBD Bias/Momentum Bias/DBD
Multiayer | SemRetaTg | 0,562501571 0,592986509 | -0,717173627 | 0,579530515
Perceptron | ComReta Tg | 0,929575688 | 0,945662693 | 0,682830521 | 0,660439491
Generalized | Sem Reta Tg 0,5661899 0,563611338 | 0,736694824 | -0,186387744
Feed Foward | Com Reta Tg | 0,906057722 | 0,927030112 | 0,664396123 | 0,660332035
Modular | SemRetaTg | 0,670262075 | 0,571970927 | -0,44555012 -0,09264112
Neural ComRetaTg | 0,903624244 | 0,945662693 | 0,682830521 0,660439491
Jordan/Elman | SemRetaTg | 0,587677202 | 0,575744178 | -0,035458315 | 0,243095555
Network | ComRetaTg | 0,929159917 | 0,923094673 | 0,676014516 | 0,695501072
PCA SemRetaTg | 0,583176255 | -0,120043772 | 0,459626625 | 0,583871884
ComReta Tg | 0,965950684 | 0957610103 | 0,739488449 | 0,700991911
S-Organizing | Sem Reta Tg 0,49948612 0,174983307 | 0,463853386 | 0,185425594
Feature Map | ComReta Tg | 0,847542596 | 0,669932024 | 0,643617929 | 0591718797
Recurrent | SemRetaTg | 0,557935807 | 0,132540479 | 0,495475214 | -0,177640552
Network | Com Reta Tg 0,85681319 0,159513988 | 0,545610276 | 0,654645401
Canfis SemRetaTg | 0,573249865 | 0,558275412 | 0,529059686 | 0,437228657
Network | ComRetaTg | 0,937704179 | 0,892392023 | 0,959437268 | 0,736663719

Também é possivel observar uma grande vantagem da fungdo TanhAxon

sobre a BiasAxon. Por esse motivo Seguiremos daqui em diante utilizando apenas a

funcdo TanhAxon.

Prosseguindo com a busca pela melhor configuracdo de rede, foi observado

que a maioria das configuragées conseguiu um valor de r maior que 0,9, entdo, para

selecionar as redes mais precisas, foram eliminadas as redes com r menor que 0,9

para a fungdo TanhAxon. Com isso as redes Self-Organizing Feature Map e
Recurrent Network ndo serdo mais utilizadas.

7.3 CONCLUSOES PARCIAIS

Foi comprovado, como observado na tabela 7.1, que o uso da inclinagéo da

reta tangente gera um ganho significativo na precisdo da rede neural adaptativa,
acompanhando os resultados obtidos pela literatura.
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A fungdo de transferéncia Tanh Axon apresentou os melhores resultados para

os dados utilizados e, portanto, segue como a unica fungdo ndo descartada e sera
utiizada para as proximas aplicagoes.

Ainda serdo definidos o melhor método de aprendizado e a melhor

arquitetura, com os dados obtidos nas aplicagdes do préximo capitulo.
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8. APLICACAO DAS REDES NEURAIS PARA ACO CARBONO

A literatura mostra que as redes neurais adaptativas podem ser utilizadas
para varios tipos de simulagbes, portanto vamos aplicar as configuracdes
selecionadas até o momento para outro tipo de ago, conformado a uma diferente

taxa de deformacéao e diferentes temperaturas (dados na tabela do anexo 3).

Com os resultados que serdo obtidos, sera feita uma nova seleg&o entre as
configuragbes até que seja encontrada a rede que obtenha a melhor precis&o.
Também objetivamos confirmar os dados da literatura e mostrar que a rede

encontrada pode ser usada para diferentes materiais.

Como foi provado no capitulo 7, que o uso da inclinagdo da reta tangente
melhora significativamente a precisao da rede, nas futuras aplicagbes serao sempre

utilizados os valores da inclinagao da reta tangente.

8.1 APLICACAO DAS REDES NEURAIS PARA O ACO CARBONO
AUSTENITICO

As configuracdes restantes do capitulo 7 foram aplicadas aos dados do anexo

3, mantendo sempre os mesmos padrdes ja utilizados.

Os resultados obtidos estdo na tabela 8.1, comparados com os valores de r

encontrados para o Ago Inoxidavel 304.
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Tabela 8.1 — Comparacg&o dos valores de r para diferentes agos.

Rede Tanh/Momentum | Tanh/DeltaBarDelta
Multilayer Ago Carb 0,967617213 0,970172613
Perceptron | Aco Inox 304 | 0,929575688 0,945662693
(Generalized |Aco Carb 0,897321815 0,949836669
Feed Foward |Aco Inox 304 | 0,906057722 0,927030112
Modular |Aco Carb  |0,866119469 0,975686977
Neural Ago Inox 304 | 0,903624244 0,945662693
Jordan/Elman | Ago Carb 0,884550454 0,962028686
Network Aco Inox 304 | 0,929159917 0,923094673
oCA Ago Carb 0,400018596 0,867303395
Aco Inox 304 | 0,965950684 0,957610103
Canfis Ago Carb 0,85565417 0,86073923
Network Aco Inox 304 | 0,937704179 0,892392023

Os resultados da tabela 8.1 mostram alguma vantagem para o método de
aprendizado Delta Bar Delta, em relagdo ao Momentum, entédo esse serd o método

utilizado daqui em diante, descartando o método Momentum.

Com o método de aprendizado e a fungéo de transferéncia ja definidos, falta
ainda definir a arquitetura da rede. Para prosseguir com a melhoria na precisao,
foram eliminadas as arquiteturas que apresentaram valor de r menor que 0,9 em
algum (ou em ambos) dos agos (Inoxidavel 304 ou Carbono) levando em conta
apenas o metodo Delta Bar Delta ja selecionado. Com isso as arquiteturas PCA e

Canfis Network estdo descartadas.

8.2 CONCLUSOES PARCIAIS

Péde ser observado nesse capitulo que as redes que melhor se adaptaram
aos dados do aco inoxidavel 304 também obtiveram bom desempenho para o ago
carbono austenitico, mostrando que a rede pode ser utilizada para diferentes
materiais e com diferentes variaveis como taxa de deformagao e temperatura, como

podemos observar na tabela 8.2, que mostra os melhores valores de r obtidos.



Tabela 8.2 — Melhores valores de r para os diferentes agos

Rede Aco Tanh/DeltaBarDelta

Aco Carb 0,970172613

Multilayer Perceptron Acgo Inox 304 0,945662693
Aco Carb 0,949836669

Generalized Feed Foward Aco Inox 304 0,927030112
Aga Carb 0,975686977

Modular Neural Aco Inox 304 0,945662693 |
Aco Carb 0,962028686
Jordan/Elman Network Aco Inox 304 0,923094673
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9. REFINAMENTO DAS REDES

60

As redes encontradas até agora ja possuem uma precisdo elevada, mas essa

precisdo pode ser melhorada, com pequenas mudangas.

O primeiro passo do refinamento da rede € o aumento do numero de

camadas intermediarias. Nem sempre um maior nidmero de camadas intermediarias

resulta em uma rede mais precisa, podendo o aumento de sub-camadas prejudicar o

aprendizado da rede. Quanto menor o numero de sub-camadas, mais simples é a

rede e mais rapida € a simulagao.

O segundo passo para o refinamento € o aumento do nimero de treinos da

rede (maximum epochs). Mas também existe um limite para o aprendizado, caso o

numero de treinos seja excessivo ocorre o overtraining, quando a rede simplesmente

memoriza o treino e nao faz a generalizagdo do problema, como explicado no

capitulo 4.

9.1 REFINAMENTO DA REDE GENERALIZED FEED FOWARD.

Tabela 9.1 — Valores de r em fungéo do refinamento — Generalized Feed Forward

Rede Aco Inicio 2 Camadas Interm | 2000 Treinos 3000 Treinos
Generalized Inox 0,927030112 0,883227749 0,951217382 0,862800742
Feed Foward | Carb. 0,949836669 0,887437259 0,970199575 0,95982803

No inicio temos o0 padréao de uma camada intermediaria e 1000 treinos.

Vemos pela tabela 9.1 que 0 uso de duas camadas intermediarias piora a preciséo

da rede. Seguimos entao outro caminho para refinar a rede, aumentando o nimero

de treinos para 2000, conseguindo uma melhor precisdo. Seguindo com o aumento

dos treinos, chegamos a 3000 treinos, mas temos uma piora do valor der.



61

Portanto, para esta rede, obtemos o melhor resultado com 1 camada

intermediaria e 2000 treinos.

9.2 REFINAMENTO DA REDE JORDAN/ELMAN NETWORK

Tabela 9.2 — Valores de r em fungio do refinamento — Jordan/Eiman Network

2 Camadas|3 Camadas
Rede Aco Inicio Interm. Interm.
Inox
Jordan/Elman = 0,923094673 | 0,957030506 | 0,95851534 |
Network L 0,962028686 | 0,969004571 | 0,05427263
2 Camadas|2 Camdas|[2 Sub-cam
Int. 2000 | Int. 4000
Rede Aco Treinos 3000Treinos | treinos
Inox
Jordan/Elman — 0,951402073 | 0,97202075 | 0,97465107
Network ) 0,985929136 | 0,98091083 |0,98129455

Para esta rede, vemos, pela tabela 9.2, que o uso de duas camadas
intermediarias melhora o valor de r, mas que o uso do trés camadas intermediarias
piora a precisdo da rede. Partimos entdo de duas camadas intermediarias e
aumentamos os treinos para 2000, como visto na tabela 9.2, resultando em pequena
diminuigdo de r para o ago inoxidavel 304 e bom aumento de r para o aco carbono
austenitico. Aumentando o nGmero de treinos para 3000, vimos que a precisdo da
rede para o ago carbono cai um pouco, mas ha bom aumento da precisdo do aco
304. Tentamos mais um aumento para 4000 treinos e ocorreu um pegueno aumento
de r, mas foi um aumento pequeno, a rede comegca a ficar mais lenta com o aumento
do numero de treinos, portanto ndo vale a pena o pequeno ganho em precisio para
o teste com 5000 treinos.

Essa configuracdo, entdo, ficou otimizada com o uso de 2 camadas
intermediarias e 4000 treinos.
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9.3 REFINAMENTO DA REDE MODULAR NEURAL NETWORK

Tabela 9.3 — Valores de r em funcéo do refinamento — Modular Neural Network

Rede Aco | Inicio 3 Camadas Int. | 2000 Treinos
ox | 0, 04566269 |0,047393777 | 0,935099
Modular Neural | @™ |0 97568698 |0,045450172 | 0,977482
Rede Aco | 3000 Treinos | 4000 treinos 5000 Treinos
Inox | 4 97200857 |0,94265558 0,926367
Modular Neural | ©3™- | 008388801 |0,99138345 | 0,088228

A rede Modular Neural j4 comega com duas camadas intermediarias como
padréo (veja item 5.1.3), entdo a primeira tentativa de refino foi aumentar esse
numero de subcamadas para trés. Mas houve queda na precisdo da rede, como
observado pelo valor de r na tabela 9.3. Foi feito entdo o aumento do nimero de
treinos para as 2 camadas intermediarias padrdo. Houve aumento em ambos os
agos para 2000, na tabela q, e 3000 treinos, visto na tabela 9.3. Para 4000 e 5000
treinos, a soma da precisdo dos acos caiu, principalmente para o aco 304. Portanto
a otimizacao dessa configuracdo foi obtida com 2 camadas intermediarias (padrdo
nessa arquitetura) e 3000 treinos.

9.4 REFINAMENTO DA REDE MULTILAYER PERCEPTRON

Tabela 9.4 — Valores de r em fungdo do refinamento — Multilayer Perceptron

Rede Aco | Inicio 2 Camadas Int. 3 Camadas Int
. Inox | 4 96496799 0,960748125 0,97968

Multilayer Carb

Perceptron am- | 5 97017261 0,980407086 0,934891

2 Camadas Int|2 Camadas Int 3000 |2 Camadas Int. 4000
Rede Ago | 2000 Treinos Treinos Treinos

. Inox | 4 97286138 0,991747447 0,933365
Multilayer Carb

Perceptron " 10,98843448 0,999214587 0,983135
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Para a rede Multilayer Perceptron (veja item 5.1.1) a adicdo de uma camada
intermediaria melhorou a precisdo geral, mas com trés camadas intermediarias a
precisdo caiu. Ficamos entdo com duas camadas intermedidrias € aumentamos o
numero de treinos. Podemos ver 0 aumento do r para 2000 e 3000 treinos, mas com
4000 treinos o valor cai.

Obtemos os maiores valores de r com duas camadas intermediarias e 3000

treinos.

9.5 ESCOLHA DA REDE FINAL

A rede que obteve a melhor precisao foi a Multilayer Perceptron (tabela 9.4),
utilizando a configuracdo de duas camadas intermediarias e 3000 treinos, com a

fungéo de transferéncia Tanh Axon e o0 método de aprendizado Delta bar Delta.

Essa é a rede que melhor se adaptou aos dados fornecidos, mostrando o
valor de r mais proximo de um para ambos os ago. Essa rede pode servir para a

simulac&o de outros agos, mas isso sera visto mais adiante.
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10. DETALHES DA REDE NEURAL SELECIONADA

Veremos agora detalhes da rede neural escolhida.

10.1 ARQUITETURA DA REDE

Figura 10.1 - Arquitetura da rede refinada - detalhes

As areas indicadas na figura 10.1 sdo as fun¢des de transferéncia e os
métodos de aprendizado, a parte de baixo € a fungdo TanhAxon e a parte superior,
com as letras D-B-D, é o método de aprendizado DeltaBarDelta.

Figura 10.2 — Arquitetura da rede refinada

E na figura 10.2 acima, vemos, nas areas selecionadas, a entrada de dados

(esquerda), as camadas Intermediarias (centro) e a saida dos dados (direita).
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10.2 ANALISE DOS RESULTADOS

Avaliando os resultados que a RNA nos proporciona, podemos saber a
qualidade da rede, veremos a seguir os resultados.

10.2.1 GRAFICOS COMPARATIVOS

Esses graficos comparam os dados de saida da simulag&o da rede com os

reais.
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Grifico 10.1 — Ago Inoxiddvel 304. r = 0,991747447
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Gréfico 10.2 — Ago Carbono Austenitico. r= 0,99214587
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Foi observado um valor elevado de r para ambos os agos, como pode ser

conferido nos graficos 10.1 e 10.2.

10.2.2 TABELAS DE SAIDA

E temos as tabelas 10.1 e 10.2, com os dados de entrada, os valores

previstos e valores reais, para os dois agos utilizados.



Tabela 10.1 — Valores de entrada e saida, Ago Inox.

850

205

204,362725

1,954 0,17
1250 -0,055 1,045 74|73,1768439
800 -0,415 1,898 320 315,732951
950 -0,032 0,886 212 | 209,00245
800 2,651 0,125 205|210,381372
950 0,252 0,443 204 | 203,013782
1150 0 0,693 118 120,354576
800 0,739 0,307 2851 290,191777
1150 0,325 0,261 108 | 102,055432
1250 0,741 0,045 57 [ 73,4774561
850 -0,023 1,239 285 289,113033
1150 0,155 0,398 115]111,321253
950 0,639 0,136 153 | 188,286096
950 0,096 0,591 210 207,081285
950 2,326 0,102 138 [ 117,730663
800 0,082 0,818 325|321,268883
850 -0,133 1,807 275 |281,255004
1250 -0,06 0,875 76| 75,7312968
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Tabela 10.2 — valores de entrada e saida, Ago Carbono Austenitico.

1000| -0,098| 25 113 ] 111,669479

900 -0,137 1,5 172,71 170,443244
1100 -0,129 1,1 94,2 |94,8618932
1100 -0,007 3,5 84,4 | 83,9660371
1100 0,015 3.1 86,5 | 84,4055127

900 -0,125 2,49 151,7| 151,705569
1100 -0,086 0,91 97,7 | 95,0984497
1100 -0,129 1,1 94,2 | 94,8618932

900 -0,086 3,48 141,3 | 139,931445
1100 -0,007 3,5 84,4 | 83,9660371

900 -0,129 1,09 177,98 | 177,309206

800 -0,242 0,9 232 232,853591
1000 -0,098 23 113,4 | 112,939925
1100 -0,051 1,89 88,9 88,8112549

800 -0,171 1,5 221,5|224,830919
1000 -0,047 391 104,7(107,186212

800 -0,264 2,9 179,6 | 183,246785
1000 0,011 2,69 111,6 | 109,252577

900 -0,031 3,28 141,3 | 140,676346

800 0 3,89 160,5 | 158,407945

800 -0,357 2,71 186.,6 | 189,382714
1000 0,425 0,3 120,3 | 121,959675
1100 0,07 2,68 88,9| 84,765847
1000 -0,077 3.1 110,2108,711851

900 -0,031 3,28 141,3] 140,676346

A comparagdo entre os dados de entrada e saida das tabelas mostra a

precis&o da rede.

10.2.3 GRAFICOS DE DISPERSAO.

Esse tipo de grafico mostra a precisio da rede para os valores testados

Foram observados os seguintes graficos.
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Grafico 10.3 - Grafico de dispersdo para o Aco Inox. 304
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Grafico 10.4 — Gréfico de dispersdo da literatura[1]
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Como podemos ver no grafico 10.3, os valores tendem a formar uma reta,

mostrando grande preciséo da rede, conforme foi encontrado no artigo[1] e visto no

grafico 10.4.
|. -1
| Scatter Plot
250 -
. ]
200
*
R4
IET — . o ® -
2 - e
* | # Tensdo (Mpa) Output‘
100 4
‘Gé
50
0 _ j o |
0 50 100 150 200 250
Tensio (Mpa)

Gréfico 10.5 — Gréfico de dispersdo do ago carbono austenitico

O artigo [2] ndo faz um gréfico de dispersdo para comparar os valores,
apenas é fornecido um valor de r de 0,990. Mas de acordo com o grafico 10.5 e o
valor de r encontrado (r = 0,999214587), podemos perceber a grande precisdo da

rede.

10.2.4 SENSIBILIDADE DOS PARAMETROS

Obtemos também, através do NeuroSolutions, o quanto cada um dos dados
de entrada influencia nos resultados, revelando qual parametro tem maior influéncia
sobre a tenséo.
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Grafico 10.6 — Sensibilidade — Ago Inox 304.
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Gréfico 10.7 — Sensibilidade — Ago Carbono Austenitico.

Podemos concluir com esses graficos (10.6 e 10.7) a grande importancia da
temperatura nos valores da tensao e também a importancia do uso da inclinagdo da
reta tangente como dado de entrada na RNA, com praticamente a mesma
importancia da deformagao na sensibilidade da rede.



10.2.5 INFLUENCIA DA TEMPERATURA
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Como foi visto, a temperatura é o parametro que mais influencia no valor da

tenséo, entdo veremos melhor a sua influéncia com os graficos de sensibilidade em

relacdo & temperatura.

Network Output(s) for Varied Input Temp. (°C)

250
—_ =Y
% 150 N
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£ 100 — S - - —
o ]
50
0 * = ‘ P
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S @“’q\@yé\@&'@‘b\@@q\@ ®
Varied Input Temp. (°C)
L
Gréfico 10.8 — Sensibilidade da temperatura — Aco Inox 304.
Network Output(s) for Varied Input Temp (°C)
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Gréfico 10.9 — Sensibilidade da temperatura — Ago Carbono Austenitico.

Podemos observar que a temperatura tem grande influéncia no valor da
tenséo, mas os gréficos 10.8 e 10.9 mostram que essa influéncia vai diminuindo

conforme a temperatura atinge valores mais altos.

E percebido nos graficos que essa relagdo ndo é continua, como o esperado.

Isso ocorre porque os efeitos das outras varidveis se superpde.

10.3 CONCLUSOES PARCIAIS

Podemos observar uma grande precisdo da rede para as entradas de dados
de temperatura, deformagéo, inclinagdo da reta e tensdo, conforme foi também
observado nos artigos usados como base para esse trabalho, conforme foi
observado nos graficos do capitulo.
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11. APLICACAO DA RNA COM MAIS PARAMETROS NA ENTRADA

Com o intuito de saber se essa rede pode dar resultados satisfatorios com a
entrada de mais varidveis, foi feita a aplicacdo dessa RNA nos dados do livro “The

Hot Deformation of Austenite”, do autor John B. Ballance.

Os dados de entrada podem ser vistos na tabela do anexo 4 e o trecho do

livro utilizado esta no anexo 7.

A tabela anexa mostra dados dos graficos de um aco C-Mn, com 0,59%C,
0,64%Mn, 0,35%Si, 0,012%S e 0,009%P, deformado a diferentes temperaturas e a
taxas de deformacdo de 2 e 20mm s™'. As unidades PSI e °F foram passadas para
MPa e °C, para manter a relagdo com os artigos ja utilizados.

O parémetro inserido é a taxa de deformacgdo, que ndo é mais fixa, sendo de
2mm s e de 20mm s'. Assim a precis&o da rede vai ser testada para um tipo
diferente de ago, com diferentes temperaturas, deformacdes e com diferentes
valores de taxa de deformacéo.

11.1 RESULTADOS DA APLICAGAO DA RNA COM O NOVO PARAMETRO

Os resultados obtidos foram excelentes, com grande precisdo da rede, assim

como visto para os dados anteriores.

O valor der foi de 0,998313422. A precisdo pode ser observada no gréfico
11.1
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Desired Output and Actual Network Output
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Gréafico 11.1 — Valores reais e simulados da RNE, Ago C-Mn, com r = 0,998313422

Também analisando o grafico 11.2, da dispersdo, percebe-se o

comportamento muito préximo a uma reta, mais uma vez comprovando a qualidade
da simulagao.

Scatter Plot
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Gréfico 11.2 — Dispersdo. Aco C-Mn
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12. CONCLUSAO

O trabalho realizou uma andlise detalhada das arquiteturas das redes
(capitulo 5), métodos de aprendizado, fungbes de transferéncia, camadas
intermediarias e numero de treinamentos.

Essa analise foi feita de forma gradual, contando com apenas duas varidveis
de entrada (temperatura e deformagdo) no inicio (capitulo 6), uma camada
intermediaria e uma saida.

Na sequéncia foram utilizadas trés varidveis de entrada (temperatura,
deformacéo e inclinagdo da reta tangente), com uma camada intermediaria e uma

saida, para dois diferentes tipos de materiais (capitulos 7 e 8).

Enfim, houve o refinamento das redes, tratando do numero de camadas
intermediarias e do nimero de treinos (capitulo 9), gerando uma arquitetura de rede
otimizada (multilayer perceptron), com trés variaveis de entrada, duas camadas
intermediarias e uma saida, realizando 3000 treinos, utilizando a fungdo de
transferéncia TanhAxon e o método de aprendizado Delta Bar Delta. Essa rede foi
entdo aplicada a um diferente material (capitulo 11), com quatro varidveis de entrada
(temperatura, deformacéo, inclinagdo da reta tangente e taxa de deformagdo) com
resultados excelentes, comprovando a qualidade da rede desenvolvida como pode

ser visto nos valores de r para os 3 diferentes materiais, na tabela 12.1.

Tabela 12.1 — Melhores valores de r para cada ago.

Aco r
Aco Inoxidavel 304 0,991747447
Aco Carbono
Austenitico | 0,999214587
Ago C-Mn 0,998313422
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Conforme observado nos artigos, foi comprovada a importancia do uso da
inclinagdo das retas tangentes nos valores de entrada da rede, resultando em um

aumento do valor de r, como foi visto na tabela 7.1.

Os resultados obtidos mostram que essa ferramenta deve ser difundida e
utilizada em grande escala, nas areas académicas, cientificas e industriais, pois
pode proporcionar ganhos na velocidade de desenvolvimento de novos projetos e
grande economia gerada com a substituicdo parcial de testes préticos por
simulagdes.
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13. SUGESTAO

Fica a sugestdo da aplicagdo do presente trabalho para outras ligas

metalicas, ferrosas e ndo ferrosas, bem como outros materiais nio metalicos.
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ANEXO 1

l. UTILIZACAO DO NEUROSOLUTIONS

Esse anexo vai abordar a utilizacdo do programa NeuroSolutions através de
um exemplo pratico de um ago inoxidavel 304, mostrando todas as etapas para a

montagem de uma rede neural.
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l.a SELECAQO DE DADOS

A primeira etapa da utilizagdo do NeuroSolutions é classificagdo dos dados. A

tabela de dados deve ser inserida sem pular linhas ou colunas, como na figura

abaixo.

|1£ Arquivo  Editar  Exibir  Inseric  Eormatar  Ferramentas [Dados  Js
| 5

A W™ (N O 0 e o N R Y s A I 1R |
B6 > R 2041
- 1 A [ B [ ¢ [ © [ E [ F |
| 1 |Temp Tensdo  InclReta Deformacéo
| 2 | 600 232 0242 0.9 .
‘ 3 | 800 2389  -0,178 0,71
4 1100 892  -0,062 1,68
5| 1000 __ 1161  -0.116 1,91
6 | soof 20411 -0278 2,31
7 800 1639  -0,128 35
|8 | %00 1762 0442 0,3
9 1000 1273 0204 0.5
| 10| 900 1483  -0,094 2,68
|11 900 1552  -0.251 2,28
1 12] 800 2407 0,05 0,5
13] 1000 1047 -0,047 3,91
14 1100 872  -0,059 249
15 1000 1308 -0,086 071
16 1100 872 0,125 2.9
| 17 1100 977  -0,086 0,91
18| 900 1727 -0,137 1,5
19 1100 767 1123 0,11
20 | 900 1587  -0.156 2,08
21 800 1779  -0185 3,09
| 22 900 1448 0,165 2,88
| 23| 900 1674  -0,255 1,68
124 1000 113 -0.098 25
125 1000 1238 -0,122 1,09
26, 1100 867  -0.043 3,29
| 27 900 143 -0,074 3,07
28 | 800 2355 0783 0,3
23| 1000 1088 0,007 3,51
30 800 1919 3615 0,11
3| 900 1797 0,074 0,69
32 900 1787 0047 0,9




82

Caso necessério os dados devem ser embaralhados, selecionando todas as

linhas, menos a primeira. Clicando no bot&o do NeuroSolutions no Excel, Preprocess

data e Randomize Rows.

__‘[ Ao E&:m Eaibl ey Foimatar  Fensmentss [edes Janela Ajyda '}_Ln_nrciqiu:?an's'l

|

0 1 WIRNGES 1 M 3 e 8 DR e S 8= - AL &I

' e

2 el 0

Aemip,  tansho o it Ditormnca

Ean {Mpa)” ~ Raly = &

Preprocess Dats
| Analyze D_m_a )
,I Tag Data
| Create/Open Network
! Craate Data Files
! Tram Network
: Test Netwaork
|: Apply Production Dataset
| NewBatch..
|
|
|
|
|
|

Batch Manager

Goto Active Data Sheet
Data Sheats...

Goto Active Repon

Open Active Network

| Help

v v v vy o> v~

|

I| Randsmize Rows

1
I3

_—_3_
K Tt T & -
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Em seguida s&o selecionados os dados de entrada, no caso a temperatura, a

tens&o e a inclinagéo da reta.

.i :Jg ;ﬁtq_u'ivcz- Editar  Egibir Inseriv  Eormatar  Ferramentas
PR TR A T e

| input = A& Temp
m ~ | 8 | ¢ NN
1 |Temp Tensde  Incl Reta [Deformacéo
2| &0 2320 0249 0,9
3 860 2389  0178] 0,71
4 1100 g92° .0062 1,68
5 1000 1161 0116 1,91
6 800 2041 -0278 2,31
7 800 16349 0128 3.8
8 900 1762 0,442 0,3
g 1000 1273 0 204 0,6
10 800 1483 -0.0%4 2,68
11 a00 1852 0251 2,28
12 800 240 7 0 05 0,5
13 1000 1047  -0,047 3,91
14 1160 872  -0.088 2,49
15 1000 1308  -0,088 0,71
16 1100 87.2 0125 2.9
17 1100 477  -0088 0,91
18 400 1727 0137 1,5
19 1100 767 1123 0,11
20 400 1587  -0.156 2,08
21 800 1778 -0.185] 3,09
22 400 1448  -0165 2,88
23 960 1874  -0.25% 1,68
24 {000 13 -0,098 25
25 1000 1238  -0,122 1,09
23 1100 867 0043 3,29
27 400 143 -0,074 3,07
28 800 2355 0783) 0,3
29 1000 1ge  -0,007 3,51
30 800 1818 3,615 0,11




Selecionamos entdo o botdo do NeuroSolutions,

Imput.

fj&;qul—.cfﬁm Eajbie lnsen Ecimatsr Feamentss Dedos  fnelr  Ajuds |
dacdldiod 232 FA0 6 A S L2 E - 2R

[v Temp

Input

'_,_u-__z'mein:mic 15 ] S .
Preprocess Dats 4
‘ Analyze Data v

Tag Data, Columm(s) As

_.v.._-lo S 'E'j I 5 |E

0 27, 0,6
] 900 1483 2,68
i 506 1552 2,28
2 800 2407 05
3 1000 1047 3,91
i 1100 87.2 2.49
5 1808 1308 0.71
5 1100 gr2 29
7 1160 a7y 0,91
] T R 1 1,5
1 1168 767 0.1
3 900 1587 2,08
1] 800 1739 3,08
2 G0 1448 2,88
3 L 3 21 1,68
i 1000 113 25
5 W 1238 1,09
5 1100 Be7 3,28
7] g0 143 3,07
3 §00. 5 0.3

Tag Data »
i Create/Open Netwerk _»
I Create Data Files 3
Teain Network »
| Test Network: >

| Dats Sheets...

| Help 3

Apply Production Dataset
New Batch...
Batch Manager »

Goto Activs Diata Sheet

Gotw Aztive Repont
Regons...

Open Active Network:

Cclumﬁ(s; Aslnput

Column(s) As Desied

Column(s} As Symbol

Row(s) As Training
Row(s) As Cioss Validation
Row(s) As Testing

Row(s) As Preduction

All Columns As Input

All Non-Numeric Cotumns A
All Rows As Training

Rows By Percentages...
qu?gs.:..

Clear Column Tag

Clear Symbol Tag

Clear Row Tag

Clzarall Tags

Select Cross-Section...
Refresh Tag Formais

Run Batch.,.
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Agora os dados de saida, no caso a deformagdo, NeuroSolutions, Tag Data,

Columm(s) As Desired.

Edier  Eikin  jnsmiw  Formastar  Fenamentas  Dados

AT R 5

o 2 NI [ RRPE Rt Sy A

_Gésned = ~

_-.—-: A 14
1
1.2
_3 f
._d -
5
6
L7
8 900 0.442 03
K 1000 204 0.6
19 900 0,094 2.68
| 11] 300 0,259 2,28
12 800 0,05 &
13 1000 -0 047 341
114 1100 01,05 749
15 1000 -0,086 0.71
} 16 1100 0,125 z9
7 100 -0, 086 0.9t
’E %00 1727 0137 1.5
.ﬂ\ 1100 76,7 1.123 &11
|20 900 1887 0158 2,08
[21 800 1779 0184 308
122 900 1448  -0.165 2,58
23 900 1874 0255 1,68
|24 1000 113 0048 2,5
25 1000 1238 0122 1.09
T2 1100 867  -0(43 3,20
|27 500 143 007 307

Janela

I:.'.:J xr vfl ;[

Ajuds |

Hewrp

Soiutions |
Preprocess Data
Analyze Data

:l'_a_g Data

== =

Create/Open Network

Create Data Files
Train Network
Test Network

Apply Production Datasat

New Batch...
Batch Manager

Goto Active Dats Sheet

Data Sheets...

Goto Active Report

| Reponts...

QOpen Actve Network

Help

v -0 -N|Z s

13

»] | Columnis Asinput

» CclL_x_mn(s) As DEfl_ri

y | Row(s;AsTuinmg

4 | Rovis) As Cross Vaiidati

Y | Rowlis) As Testing
E—— T

b

3

Ja temos as colunas, com os dados de entrada e saida, marcadas. Agora

precisamos classificar as linhas.
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As linhas devem ser divididas na proporgdo de 70% para treinamento, 15%

para validacéo e 15% para teste.

Marcando as linhas de teste, clicamos em NeuroSolutions, Tag Data, Row(s)

As Training.

Hu) squie: Edits  Esibie s Eeimats Feramarias Lados Jensi:  &juda || HawoSolutions |
1 L S o A U [P e s B E ALEl g Premocesate I
| R 1150 — T aneom | R
; o = | Tag Data b| | Cc’:mn(s)Aslnpm —
. Craate/Open Network » Column(s) As Desired
Create Data Fites > Row(s) As '?r.ainizg“
| Train Network L ] Row(s)As_(ross_Validnion
| Test Network 4 | Row(s) As Testing
| Apply Production Dataset | %
| hiew Batzh., . < Il =
| Bateh Manager 14
Geto Active [raze Shest
| Data Sheets...
| Goto Active Regen
I Repons.
I aen Active hetwaork
| :hlp e 4

118 4007 9,78
800 305 0458 0432
R Aol 1R 1348 210




NeuroSolutions, Tag Data, Row(s) As Cross Validation.

Ajune  Editsr fnnle  Jratds  Foomatar  Feramentss Dacos Janela  Anda | L_ieurcSe'_u_:;iEn;
__d_.__ﬂj._d A VU N A '-.Z'AIAI | Preprocess Data * - -IN I §|E
. A | Analyze Data L4 — R m a
[ ~ TagData - » | Columa(s) As lnput
et~ Dotarmaca | Create/Open Netwark » Columnis) As Deasired
| Create Date Files » II Row(s)AsTrammg
| Train Network 4 L Ruw(s)AsCross \r‘ahdanon
Test Network L4 | Rowis) As Testing
Appl Production Dataset ¥
| MNew Eatch..
| Esten Manzger »
Goto Actrie Data Shaet
\ UstaSheets.,
‘ Fepcdf
‘ O;..en Astivz Newwork
| Help 3
NeuroSolutions, Tag Data, Row(s) as Testing.
2 aigues. fditar Geh [reair Formatsi  Fersmentss  Dados  Janals  Ajds | jjg_q_sﬂ?dlE:T_\s_"_ .
| Preprocess Data 4 - 10 SN T g IE
| Analyze Data s oe—
! [__T_z_g_nixa_ =0 Celumnis) As lnpat
| Ceeate/Open Network » Columnls) &s Degired
ML |
Create Data Files > Rovds) As Teaining
| Train Network 4 | Fiovns) As Cross Vahdatlon
| Test Network » Row(s) As Testing -
| Apply Preduction Dataset ¥
- New Bateh..
|
| Batch Manage: »
| Goto Active Data Sheet
850 0156 0 67
500 0679 0.941 | Data Sheets...
B4 T804 617 ¢ GctoAchve Repert
1250 QUL 1.046 | Reponts...
L K 1530 | ——— -
(13 0052 0,856 | Open Active Metwork
200 2,851 o126 Help S
950 0,252 0,410 - 2 =
1160 I
aty 01 307
1160 U024 0,261
12460 e {045
RO Bl 0 1,235
1350 0155 089
950 1535 0,704
g50 1,605 0,691
550 2026 4,162
200 0,062 0,610

87
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Assim temos todos os dados ja classificados. Lembrando que devemos
selecionar toda a linha e toda a coluna para fazer a classificagdo, ndo apenas as
células que possuem os dados.

Com os dados divididos, podemos iniciar a montagem da rede neural.

|.b Montagem da RNA

Novamente clicamos em NeuroSolutions, Create/Open Network, New Custom
Network.

] Arquive  Edia Exbi  [nsats Fommetar Feiaméniss Dadcs  fanela  Ajuda || MewrcSelutions |
) Sl S Al L7 L Lé

daih e Ll | x - al4l | Preprocess Dats
B Analyze Data

K T L [ ®m |

14

»

| Tag Data »
" Caente/Open Network Pl hew Classiization haswers

»

b

New Custom Network...

! Creata Data Files J
== 5

| Train Network

Test Network
Apply Production Dataset
New Batch...

Batch Manager +
| Geto Active Data Sheet
Data Shests...

|
Reports..

Goto Active Repont

| Open Actrve Network

. Relp »

17l 5T ey a0db
Bad 284 0,02 1,228
1160 116 0165 7308
A5 153 0,539 0,136
40 e 0,086 0,681
850 138 Z326 @ {12

200 925 feifiiied aad



Abre-se a janela do NeuralBuilder. Podemos ver no quadro destascado na fig

os tipos de redes disponiveis no programa, neste exemplo vamos selecionar a

Multilayer Perceptron.

2 | 2rguive  Editar Eﬁ_bil Insenir  Eomatar  Ferramentas Dades  Janela  Ajuda || NeuroSolutions

I R [P B [ &SI = T e A |2 = - 4] 1) 4y q,j asial

| Testing = 7 850 o

oA B T D | E | F G ]

AP, Aanshs el Etonacs 2

W tC NMps)  Rela o

| 94 | 950 202 -0.119 1,398

1_95_.’ 950 177 -0.293 2,091

| 96 1250 80 0078 0,398

| 97 1150 118 0.032 0,545 : .

‘ 98 1150 105 -0.072 [ % NeuralBu;ldcr ] -:-_ o - [—E—-—-_];l}"'_:é“;ﬁj \

|89 850 263 0738 : su._SEN I
100 950 211 -0.056 Multlaver Ferc: ’ : \ i

| 101 1250 75 -0.055 j mﬁth Fl‘"”zfd Neural Model i

102 800 331 -0.018 deaf;Eh[‘m&;. Na?um Welcome to the NeuralBuilder,  »

|103| 850 280 0156 Principal Component Analysis (PCA) || Sterting with your data, this tool <~ [ |

[104] 800 290 0.679 th gg{gﬁnuﬂfﬁg‘ Td“ﬂ_k Network will walk you through the Pt

[ 10| 850 205 1,954 Tine grhlz:?m:;:mk WOk || process of designing and tramung | Dl 'f

IlQ@ 1250 74 -0,055 Recurent Network a neural‘nem-'ofk Thm_are : |Ir
107 800 320 -0.415 {|| CANFIS Network (Fuzzy Logic) many different types of neural |
108 950 212 -0032 || Suppoit Vector Machine nem_orks, but mos; can be |
- ' e = | clasetfied as belonging toonz of | ]~
109 800 205 2,651 | ESATT RV Ra— major pandigms listed o the |

110/ 950 204 0,252 O are lavered feedfmard networks || | lefy Each paridigm will have |

il 1150 118 0 M| typicaity trained with static 3 advantages and disadvantates |
112| 800 285 0,739 Ol backpropagation. These networks | depending on your particular

[113) 1150 108 0.325 alll| have found thelin\iay mto ) application. The NeuralBuildar

[114] 1250 57 0.741 ol c?:t?ﬂesitapphicah;ns :;qurg_r;xg_ Imakesi(easy to try them all!

115 850 85 0023 gfffl o pRem cassiliation. Hheir -]

[116] 1150 115 0,155

[117] 950 153 0639

‘u& 950 210 0,096 ol

1118 950 138 2,326 '

[120/ 800 325 0,082 0,818

[121 850 215 0133 1,807
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Em seguida temos a tela informando a quantidades de camadas intermediaria ou

ocultas (Hidden Layers), destacada na figura. Mantemos apenas uma subcamada.

%
:E‘grquivo ‘Editar  Edibli  lnseric  Faimatar Fenamentas Dados  Janela Ajuda | MeuroSolutions
B el s I | dy e 2z ool abianay B s -
Testing [ A 850
3 I s T — .
1an0s86 Anecl Deformaca
1 Wit Gt s st
94 | 950 202 -0.119 1,39
95 | 950 177 -0.293 2,091
196 1250 80 0.078 0,398 i
| 97 1150 118 0.032 0,545 . p————
| 98 | 1150 HIE -0.072 ! % MeuralBuilder ; _I:E.-c:»!_d'-f, ||E'\Z3—g[1
| 99 850 253 0.738 0, L = :
1100 950 21 -0.056 L T T e
o1 1250 7% 0055 0 Multilayer
102| 800 kX3 -0.018 1, .
1103 850 280 0.156 | et PEs: 3
104 800 290 0.679 o) Output PEs: 1 i
(105 850 205 1,954 (i Exemplars: 85 E I
108 1250 74 -0,055 Tl . |
1107, 800 320 0,415 N HodenLayerss 1 ] -;
1108 950 212 0,032 .| e _
§10_9_' 800 205 2,651 i Multilayer perceptrons (;\.iLPs)are—hyered fesdforward networks -
{110 950 204 0,252 Ofll | typically trained with static backpropagation. Here you simply specify iy
111 1150 118 0 @ {li | the mumber of hidden layers, These networks have found their way into !_{ [
112/ 800 285 0,739 7 |lf | countless applications requiring static pattem classification. Their main 154
:113_. 1160 108 0,325 ol ad‘-'z:-u.‘._n? are that they a:e:uy to ust, and that theycuf App{axxmzfe E :
114 1260 57 0.741 o, any mput'cutput map. The key disadvantages are that they tram slowly,

||| and require lots of traiing data (typically three times more training

1115 850 285 0,023 1
._1]53 1150 115 0,155
117, 950 153 0,639
[118 950 210 0,096
119 950 138 2,326
120 800 325 0,082

1121} 850 215 0,133
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Na tela seguinte escolhemos o tipo de funcéo de transferéncia da subcamada.

No exemplo ficamos com a Tangente Hiperboalica.

icrasolt Bxel - Aco 304

.';_-.-_.]_ﬁ[.;gu'wc Editar E;.hu Inserit. Formatsr Feusmeéntss  Dades  jeneis  Ajuds | NewroSolutions

bl 2 il 3 b o EXR-RSABNTEN H
Testing B 850 o o B e B
LA s C D | E [ P | O T [N e
demin. Jensso Anct Deformacy 7 7 4

| @has i i i

9 950 202 -01189 1,398

95 950 177 -0.283 2,091

96 1250 80 0.078 0,398
97 | 1150 118 0.032 0,545 .

98 | 1150 105 -0.072 [ % MeuralBuilder ) |
99 850 253 0.738 0 L .. T SN |
1_00‘ 950 211 -0.056 1 __Hidd Laver #1 ] This pmc“_gused to gpequ » I
Wﬂl 1250 75 -0.055 a [ en Layer the parameters a layerof | ||
102 800 331 0018 , processing elements PEs). = | |
103 850 280 0156 . NeuroSolutions simulations |
104/ 800 290 0679 ol e b%’:fi’; it |
Y fitiency. i i
105| 850 205 1.954 each layer containa a vector ik
106) 1250 74 0,055 1 of PEs and tht the -
167 800 320 0415 1 parameters selected apply to il
108 950 212 -0,032 0. I P the entire vector. The !
20, , . - LinearS |
109! 800 205 2 651 afl Leaning Rule: l Smam&h parameters are dependeat on H
110 950 204 0,252 of BiasAxon S the neural model, but all |
111 1150 118 0 O —— —S_@MLEI:’E&;_"— sty T8QUIre a nonlinesrity }
112, 800 85 0739 0 Momentum [0.700000 [~ | function to specify the |
13 1150 08 0325 0 behasiar of the PEs In '

A_! ' addition, each laver has an i
114, 1250 57 0741 0, associated learning nafe and i
1§i 850 285 0,023 1 |
116] 1150 15 0,155 ol
117 950 153 0,639 0,

118, 950 210 0,096
119 950 138 2,326
120 800 325 0,082
.1214 850 275 0,133
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Na mesma tela, logo abaixo temos o método de aprendizado que sara utilizado

(Learning Rule). Selecionamos Momentum.

Arquive  Editar (Euibir lnseir  Formatsr Femsmentss  Dados famels Ajuda | MeuroSolutions
NN R TRy - TP e | (2 2o bilibn g Bisie
| Testing [+ A 850

| Db | E F | 6 | H 1T 0 T 1
Inct Oefonnaca G Z .

1 Y% Mpa} Rota
94 950 202 0,119 1,398
95 950 177 0.293 2,091
96 1250 80 0078 0,398
97 1150 118 0032 0,545 .
a8 1150 106 -0072 1[5 i, T =~
99 850 253 o738 gleaieuraiBuider i e R
100 950 241 -0.066 1 Ya s T o ay This panel is used to spacify +
101 1250 75 0.055 0] r Hidden Layer #1 the pfnmemsalayej;?m@ )
102 800 331 0018 1 GA | processing slements (PEs).  ©,
103 850 280 0.156 _ — NeuroSolutions simulations
104 800 290 0679 o] | Processing Elements: (4 I | are vactor based for
— ' i i — S efficiency. This mplies t
05| 850 205 1954  Tianster Tation | | e o et e that
@ w0 w gee ofPEs s dhat e

=5 Uy ameters selected apply to
108 850 212 -0,032 13 g:: entire vector. it‘hepp i
109 800 205 2,651 0, parameters are dependent on
110 950 204 0.252 o =it the neural modal, but all
1ﬁ 1150 118 0 0 ConjugateGradient require a nonlmeanity
112, 800 285 0,739 o, Mg evenbeigMaiquar = J function to specify the

2 ' Quickprop a -
13| 1150 108 0325 0, DeltaBaDeks  ~| | | Peiaviorofthe Pls.In
114 1250 51 074t o st amg it
115 850 285 0,023 1 "
116 1150 115 0,155 o,
17| 950 153 0,639 ) _ Close |
118 950 210 0,09 ol
119 950 138 2,326 0,907
120 800 325 0.082 0,818
121 850 2715 0,133 1,807
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Na préxima tela selecionamos as mesmas fungées anteriores mas agora para

a camada de saida.

“_‘Jj Atquive Editar  Exbir [oserir Formatar Ferramentas  Dados  Janela  Ajuts | NeuroSolutions

RS = N T BN 2T P R N o 4| e s oA gL ey By
| Testing |w A 850
' [ ¢ [ © [ E 1 J
et Defopmacs 7

Tk 0t Db oo Do Dntesss DG i
94 950 Pl R T 1,398
95 950 177 -0.293 2,001
96 | 1250 80 0.078 0,398
97 1150 118 0032 0,545 _ - E—
98| 1150 105 0072 1 - E |
[99 850 263 0738 0, e —
19(_)4 950 211 0.056 J Thus panel is used to specify ||
101. 1250 74 -0.055 0, the parameters a layerof [ |
102} 800 331 0018 1 GA Q“mss:’hf?‘“"“.‘“fft” 111

' - Neuro tions simulations
10§3 450 20 U e : A [77 T | ars vector based for |
[104 o0a 290 0.679 0, T — efficiency. This impties that h
%gg ’ 1338 22‘51 (1) ggg 3 Transfer | TanhAxon v each layer contains a vattor |
bl e ! of PEs and that ths i
T A pae sty

-\, i —_— the entire vector. 2

1109] 800 205 2,651 0| Leaming Rule: [Momentum | pirnters s depeade
| i T vy the naural model, but
WO A seseanm S
2l e00 265 0739 off Momentun (0700000 - | fonction to speify the
13 1150 108 0325 o behavior of the FE3. ln
= ' addition, each layer has an
]%1! 1;28 22; ggg ‘; associated learning ruls and
16 1150 15 0,185
117 950 153 0,639  Close |
118, 950 210 0,09
119 950 138 232
1120, 800 325 0,082

FET ocn a7C n 199
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Em seguida € escolhido o nimero maximo de treinos que a rede ira executar.

F2] Arquive  Editar Evbir Insedi Formatse  Ferramentss Dados Janels  Ajuda | HeuroSofutions

ERIE N = NEEETIE VN 2 S5 Mo Whcoeas 1| (2 = o4l allhyap [ s

_Testing = & 840
LA | B ]

T

T T

H I

L

1 D nt G s Do - i

94 1,308

95 950 177 0293 2,091
96 1250 80  0.078 0,398
97| 1150 118 0032 0,545 s
38| 1180 105 -0.072 N NeuraiBuilder R |

99 | 850 253 0738 0f 3

100 950 211 -0.056 R o ¢ e
101 1250 7% 005 7 ] Supervised Learning Control ;l':;x:::l:vm Ki;;:::hs field =
|1—02| 800 331 -0.018 1 Masimom E nochs iterations (over the training iE‘
103, 850 280 0156 L ——— s2t) will be done f no other |
104, 800 290 0679 0 [1000 criterion kicks . The Error
105, 850 205 1,954 - Change box contains the
108] 1250 74 0,055 1 Temination m;;;‘;‘:‘;‘ﬁm°
107 800 320 0415 1 7

108] 950 22 002 of | " gl
| 109i 800 205 2.651 0, The NeuralBuilder has MSE
1110 950 204 0,252 ot o termination Activated by

11 11 1150 118 1] 17 | - = dﬁtll._ﬂi. To_ terminate the

112 800 285 0739 of traiuing strietiy based on the
13 1150 108 0325 Ol weight Update fumber of epochs, clck the
114) 1250 57 0741 ¢ © OnLine  ® Batch s et
115 850 285 0023 1 | : ‘ -
116 1150 115 0,155 0
117! 950 153 0,639 olfl
|18 950 210 0,095

19, 950 138 2326 0,107

120; 800 326 0,082 0,818

12ﬁ 850 275 0,133 1,807




Podemos enfim finalizar a construgéo da rede.

il Microsolt Bael - Aco 304

14_] _!;tqﬁiw (Ediitsr E}_i_b_ie Insetit  Eormatar  Feamentss  Dados  Janela  Ajuds || NeuroSolutions

il Bl A e Al s Iz o0 il ) B we
Testing (¥ % 850 =

A G | ¢ | 6 | nH [ 1

ABMp 360880 " 7% 7 / /
| D0 U o G D i
94 950- 202
95 950 177 0293
96| 1250 80 0078
7] 1150 18 0.032
98| 1150 105 -0.072
99 850 253 0.738
100] 950 211 0056
101 1250 75 -0.055
102 800 331 0018
103 850 280 0,156 ] j Dutput-+ — -
1041 800 290 0679 ke " | Datawiiter v
105 650 205 1,954 [| | TainingSet I CV.Set | [ TrainingSet T CV.Set
106! 1250 74 0,055 ' 4 !
107 800 320 0415 il Desied Enor
108, 950 212 0032 il | —— e _ : ,
109 800 205 2651 | |DataWiiter ~ {Dataliraph B2
110; 950 204 0252 I TiainingSet [~ CV.Set | [~ TymngSet [ CV. Set
111 1150 118 0 | I 1 : -
'1'1'2_ 800 285 0,739 i Perfoimance Measures - -
113 1150 108 0325 | | * Classification - " [ Tiaining Set
114, 1250 57 0.741 ‘ I Geneiad [ CorfusionMatix |~ ROC | [~ ¢y og
115] 850 285 -0,023 i p- A= »
16, 1150 15 0,155
17 950 153 0,639
118 950 210 0,096
118 950 138 232
120 800 325 0,082
121 850 275 0,133
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Aparece entdo a arquitetura e configuracio da rede criada pelo Neuro

Solutions.
96| 1250 80 0078 0,398
87| 1150 18 0.032 0,545
98| 1150 106 -0.072 1,523
99 850 253 0.738 0,341
100 950 211 -0.056 1,057
101 1250 75 -0.055 0,932
102 800 3311 0,018 1,363
103 850 280 0.156 0,67
104, 800 290 0.679 0,341
105, 850 205 1,954 0,17
106 1250 74 0,055 1,045
107 800 320 0415 1,898
420 ofs ——————aeal__aaoae__ssae. - .
1) NeuroSclutions - [Breacboard?] TS g - ' ; ' T ]
| [ Fite Edit Alignment Tools View Window Heip
H i1
D B B - O 0 2 e & 0B
E It New Open Save San Reset Zero Count NBuilder NS5 Excel CSW WEzp

O formato dessa rede varia conforme as escolhas mostradas nesse processo.

Com a rede criada o passo seguinte é treinar a rede.



I.c Treinando a RNA.

Para iniciar o treinamento clicamos em NeuroSolutions, Train Network, Train.

o) amuie Edte  Edbir jne Ecimatar

Ferramenias

Dotss Janele  Ajuda

ik ﬂg_y:cﬁ@wm l

[0 WA SN T N - TP T Y e £
Testmg  |= £ 350

L8 X - 4] "E

Tt
Rata

Datormaca
[+ 3

| Preprocess Data
Anafyze Data
Tag Data
Create/Open Netwerk
| Create Data Fites

Train Network

0,886
0,725
0443,
0,692

0,301

0,264
0.045
1,210
7,558
0,130

0691

0162
0,815

| Test Netvork
| Apply Production Dataset

| New Batch...
Batch Manager

Goto Active Data Sheet
Data Sheets..,

Goto Active Report
Reposs.,

Open Actrse Network

] Help

- Trin...

| TrainN Times..,
i Vary A Parameter...
| Leave NOut..

Teain Genetic..,

Run Batch .
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Na tela que se abre podemos mudar o nome do treino, definir novamente o
nidmero de treinos que serdo rodados e escolher um ndmero de ciclos que o

programa vai rodar a partir do momento em que ndo ha melhorias no treino.

T;g?-f:;amﬁ?xcd- TIT—— ——
£2] Amuivo Eou vt nsmic Formstar Feramentss Dados Janehs  Ajuda | MewrsSolutions
Pl Ao I s e Sl o i 8 T ol 2L dy g B A g &l

_ Testing
LA

SR 550
B [

Tonsio AnelDeformaca
/ Ay

1,398
2,081
1260 80 0.078 0,348
1150 118 0032 0,545
1150 105 -0,072 1,523
850 253 0738 0,341

Trial Name: | Tranl

Training Options -

Ei.nbcruprod\s | 1000 ]

i 950 211 0,056 1,057 W Use Cross Vakdation ¥ Randonize Initial Weights
1250 75 -0.055 0,932 A _ o
800 331 -0.018 1,363 Cross Validaton Termination
| 103/ 850 280 0156 0,67 S
— ’ T te afte 100 t
104, 800 990 0679 0,341 ermate after epochs wjo merovemen
ey Wi\ Plani { Phnz.Z-PlanB Vi b

I™ For Classification problems, make dasses avenly weighted

| o I Cancel ‘ |

|| Pronto
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Apos o término do treino, o programa abre um relatério (report) sobre o treino.

jug _glcmsoﬂ [xce}_—_A_q_o 304 :

(2] Aquive  Editar  Exibir  Jnserir  Fermatar Farramentas Dados  janela Ajiida | NeuroSolutions

SRR = I I W - A TP /] 12 = -8 gl ey B
B3 vk B

MSE versus Epoch

—— Training MSE
Cross Validation {SE

0 + + + + t + + + t +
1 100 199 298 287 496 G55 894 793 892 991
Epoch
Best Networks Trainitg Cross Validation
Epoch # 1000 ] 1000

Minimum MSE 0007349922 © 0,004250671
Final MSE  0,007349922 °  0,004250671 °

e ———

Com a rede treinada podemos agora test4-la.
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I.d Teste de rede.

Novamente clicamos em NeuroSolutions, Test Network, Test.

EE 1ra_'.':l-_a TSI 1 lr.ﬂu Ezimater Fetiamentss  Dados lacels  Ajuda J_L‘.‘;eu::._‘;ckg}m;&:l -

v & a _l‘—. v a il “2\'_ g_,_-} _1_]] | Piegrocass Date ¢ i._ B 0 . _N_ 51 lgi,'ﬁi_
| Ansyae Dats [
— B Tag Das » ,_ - - o
MSE versus Epoch Creste/Gigen Network » '
l ‘ Create Data Fites [
i S || Teein Network >
[ Tembewok | rer —
| ApplyProductenDatsset | | geactuity Abcut the Meen.

|
— Tiaining HSE New Batch.. | RunBatch...
Cross Vandanon 1| Batch Manage: » |— ————————

| Goto Active Data Sheat

.I\‘
004 s = | Dsws Sheets...
0.02 . e | =
0 " Tt | ‘ Goto Active Report
1 100 199 298 397 498 SQS 694 793 892 891 Reponts... |
Epoch || OpenActive Natwork

i— i Hep v
l e
|Best Networtes Training Cross Validation
|Epach # 1600 s 1000

0y
FMimmum KSE 0007346922 0004260671 |
Firal MSE 0007349922 0004250571 |
|
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Em seguida vemos o relatério do teste, mostrando em um grafico os dados de
saida que inserimos no programa (Deformagao) e os dados de saida previstos pela
rede (Deformacgdo Output). O mais importante nesse caso € o quanto o r se
aproxima de 1. Quanto mais préximo de 1 o r ficar, mais precisa € a rede.

Observamos também o quanto o grafico da previsdo da rede se aproxima do
real.

Microsoft Bael - Aco 304 _W il

;_] Aruive  Editar  Exibir Inzerir  Eormatar  Ferramentas  Dados  Janela  Ajuda | NeuroSolutions

. ™ | ,f'_. _]'_; = B A R S e 7 9, B - 51.4) | F0 ) o

25 4
24 I
' i %
/ \‘ Deformacio
\ e L N R Deformacio Qutpul

Output
e
e <f,r
A=
.

0 +—+—+—1 e e e R
1 2 3 4 5 8 7 8 8 10111213 14 15 16 17 1B
0
Exemplar
\Performance Deformacin
(MSE - 0.057669513
‘NMSE 0.194036817
MAE 0,136932539 |
Min Abs Error 0.000715558 |
Max Ahe Frrng (L R731234R1 |

e 0917542313
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ANEXO 2

Tabela Randomizada para o Ago Inoxidavel 304 com taxa de def de 2,3mm s

Temperatura (°C) | Tens&o (Mpa) | Incl. Reta Tg | Deformagio (mm)

1150 101 -0,045 1,864
950 200 -0,136 1,523
850 285 0,087 0,795
950 206 0,119 0,5

850 287 0,005 1,114
1250 82 -0,046 0,523
1150 117 -0,082 1,068
1150 75 1,951 0,045
800 330 0,086 1,148
800 246 1,852 0,188
850 275 0,227 0,568
850 185 2,421 0.125
800 175 3,429 0,083
1150 88 0,892 0,091
800 320 0,166 0,693
850 272 -0,215 1,92

800 328 -0,05 1,579
1150 116 -0,09 1,193
1150 100 -0,05 1,977
800 215 2,581 0,131
1250 80 0,128 0,341
1250 72 -0,023 1,261
950 190 0,633 0,295
1250 71 0,009 1,398
1150 118 -0,056 0,852
800 310 0,336 0,545
950 180 0,967 0,227
1250 77 -0,064 0,818
850 267 0,441 0,443
800 237 2,022 0,18

850 284 -0,046 1,466
1150 100 -0,064 2,091
1250 71 0 1,511




Temperatura (°C) | Tens&o (Mpa) | Incl. Reta Tg | Deformagdo (mm)
1150 117 0,087 0,477
850 155 3,258 0,091
950 190 -0,212 1,852
950 205 -0,101 1,295
1150 98 -0,096 2,204
850 278 0,165 0,614
1250 78 0,193 0,295
800 325 -0,186 1,773
1150 95 0,548 0,148
1150 103 -0,027 1,636
950 194 -0,194 1,739
950 212 0,05 0,682
800 260 1,417 0,23
800 327 -0,059 1,67
1250 82 0,032 0,454
1250 81 -0,082 0,602
1250 77 -0,115 0,75
850 275 -0,101 1,693
800 328 0,08 1,045
1150 103 0,389 0,204
800 225 2,471 0,17
950 199 -0,165 1,625
950 212 0,009 0,807
950 208 -0,077 1,17
1150 102 -0,013 1,75
850 220 1,305 0,204
1250 75 -0{055 1
950 212 -0,045 0,977
850 245 1.9 2,159
850 285 -0,037 1,341
1150 117 -0,068 0,977
850 233 1,141 0,25
1250 65 0,472 0,114
850 260 0,634 0,375
1250 73 -0,06 1,159
800 327 0,073 0,932
950 110 4,56 0,067
1250 80 20,101 0,67
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Temperatura (°C) | Tensdo (Mpa) | Incl. Reta Tg | Deformacdo (mm)

1150 112 0,27 0,329
800 331 0,069 1,261
850 285 0,014 1,011
1150 106 -0,041 1,386
950 165 1 0,17

800 330 -0,027 1,477
850 265 -0,34 2,034
850 286 0,041 0,898
1150 118 -0,007 0,75

800 303 0,458 0,432
800 185 3,355 0,104
950 184 -0,233 1,966
950 198 0,321 0,375
1250 70 0,344 0,17

1150 109 -0,038 1,307
850 245 0,931 0,295
800 270 1,176 0,261
950 162 -0,82 2,204
1250 75 0,271 0,227
1150 118 0,013 0,614
850 280 -0,073 1,568
950 202 -0,119 1,398
950 177 -0,293 2,091
1250 80 0,078 0,398
1150 118 0,032 0,545
1150 105 -0,072 1,523
850 253 0,738 0,341
950 211 -0,056 1,057
1250 75 -0,055 0,932
800 331 -0,018 1,363
850 280 0,156 0.67

800 290 0,679 0,341
850 205 1,954 0,17

1250 74 -0,055 1,045
800 320 -0,415 1,898
950 212 -0,032 0,886
800 205 2,651 0,125
950 204 0,252 0,443
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Temperatura (°C) | Tensdo (Mpa) | Incl. Reta Tg | Deformag&o (mm)
1150 118 0 0,683
800 285 0,739 0,307
1150 108 0,325 0,261
1250 57 0,741 0,045
850 285 -0,023 1,239
1150 115 0,155 0,398
950 153 0,639 0,136
950 210 0,096 0,591
950 138 2,326 0,102
800 325 0,082 0,818
850 275 -0,133 1,807
1250 76 -0,06 0,875

105
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ANEXO 3

Tabela com dados randomizados do Ago Carbono Austenitico, com 0,79% de

carbono. Taxa de deformagéo de 10mm s™.

Temperatura (°C) | Tensfo (Mpa) | Incl. Reta Tg Deformagéo (mm)
800 232 -0,242 0,9
800 238,9 -0,178 0,71

1100 89,2 -0,062 1,68
1000 116,1 -0,116 1,91
800 2041 -0,278 2,31
800 163,9 -0,128 3.5
900 176,2 0,442 0,3
1000 127,3 0,204 0,5
900 148.3 -0,094 2,68
900 155,2 -0,251 2,28
800 240,7 0,05 0,5
1000 104,7 -0,047 3,91
1100 87,2 -0,059 2,49
1000 130,8 -0,086 0,71
1100 87,2 -0,125 2,9
1100 97,7 -0,086 0,91
900" 172,7 -0,137 1,5
1100 76,7 1,123 0,11
900 158,7 -0,156 2,08
800 177,9 -0,185 3,09
900 144.8 -0,165 2,88
900 167.4 -0,255 1,68
1000 113 -0,098 2,5
1000 123,8 -0,122 1,09
1100 86,7 -0,043 3,29
900 143 -0,074 3,07
800 235,5 0,783 0,3
1000 108,8 -0,007 3,51
800 191,9 3,615 0,11
900 179,7 -0,074 0,69
900 179,7 -0,047 0,9




Temperatura (°C) | Tensdo (Mpa) | Incl. Reta Tg | Deformacéio (mm)
1100 97,7 0,074 0,5
1000 120,3 0,425 0,3

800 235,5 0,783 0,3
900 179,7 0,051 0,49
1000 106.4 -0,137 3,7
1000 130,8 -0,086 0,71
800 163,9 -0,128 3,5
800 204 1 -0,278 2,31
1100 88,9 0,094 2,09
800 162,2 -0,114 3,7
900 153,85 2,684 0,11
1000 113,4 -0,098 2,3
1100 86,7 -0,043 3,29
1100 88,9 0,07 2,68
800 210 -0,292 2,09
900 164 -0,196 1,89
900 141,3 -0,086 3,48
900 179,7 -0,074 0,69
800 143 -0,074 3,07
1000 127,3 -0,078 0,9
1100 83,7 0,023 3,87
800 2215 -0,171 1,5
900 179,7 0,051 0,49
1000 111,6 0,035 2,9
900 167.4 -0,255 1,68
800 228.5 0,171 1.1
800 238,9 -0,178 0,71
800 2407 0,05 0,5
900 155,2 -0,251 2,28
800 179,6 -0,264 2,9
1000 108,8 -0,082 3,29
800 162,2 -0,114 3,7
900 1561,7 -0,125 2,49
800 170,9 -0,242 3,29
800 170,9 -0,242 3,29
1100 844 -0,059 3,68
800 195,3 -0,314 2,5
1000 112,7 -0,078 2,09
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Temperatura (°C) | Tensdo (Mpa) | Incl. Reta Tg | Deformacao (mm)
800 228,5 -0,171 1,1
800 2145 -0,185 1,91
1000 102,9 1,906 0,11
900 137,8 -0,015 3,84
1000 123,1 -0,118 1,31
1100 88,9 -0,051 1,89
1100 97,7 0,074 0,5
1000 116,9 -0,079 1,68
800 186,6 -0,357 2,71
1000 120,3 -0,094 1,5
1100 97,7 0,007 0,71
800 158,7 -0,156 2,08
800 195,3 -0,314 25

1100 97,7 0,007 0,71
900 173,4 -0,125 1,31
800 177.9 -0,185 3,09
1100 87,2 -0,059 2,49
1000 110,2 -0,077 3.1
1100 90,7 -0,118 1,29
1100 83,7 0,023 3,87
1000 116,9 -0,079 1,68
800 210 -0,292 2,09
900 137,8 -0,015 3,84

1100 76,7 1,123 0,11
1100 90,7 0,33 0,3
800 2145 -0,185 1,91
900 179,7 -0,047 0,9

1000 108.,8 -0,082 3,29

1000 111,6 0,011 2,69

1100 89,8 -0,003 1,48

1000 111,6 0,035 29
800 191,9 3,615 0,11

1100 88,9 0,094 2,09
800 218 -0,207 1,68
800 225 -0,15 1,31

1100 90,7 -0,118 1,29
900 164 -0,196 1,89

1000 116,1 -0,116 1,91
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Temperatura (°C) | Tensdo (Mpa) | Incl. Reta Tg | Deformagdo (mm)
1100 88 0,011 23
1100 84,4 -0,059 3,68
1000 123,1 -0,118 1,31
1000 127,3 -0,078 0,9
1100 90,7 0,33 0,3
1100 88 0,011 2,3
1000 106,4 -0,137 3,7

800 218 -0,207 1,68
1000 102,9 1,906 0,11
900 176,2 0,442 0.3
900 148,3 -0,094 2,68
900 137.8 -0,047 3,67
1100 89,8 -0,003 1,48
1000 127,3 0,204 0,5
900 177.9 -0,129 1,09
900 137.8 -0,047 3,67
1100 89,2 -0,062 1,68
800 225 -0,15 1,31
900 153,5 2,684 0,11
1100 87,2 -0,125 2.9
900 173,4 -0,125 1,31
1000 108,8 -0,007 3,51
900 1448 -0,165 2,88
800 160,5 0 3,89
1100 86,5 0,015 3.1
1000 123,8 -0,122 1,09
1000 112,7 -0,078 2,09
1000 120,3 -0,094 1.5
1000 113 -0,098 2,5
900 172,7 -0,137 1,5
1100 942 -0,129 1.1
1100 844 -0,007 3,5
1100 86,5 0,015 3.1
900 151,7 -0,125 2,49
1100 97,7 -0,086 0,91
1100 94,2 -0,129 1.1
900 141,3 -0,086 3,48
1100 844 -0,007 3,5
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Temperatura (°C) | Tensdo (Mpa) | Incl. Reta Tg | Deformagio (mm)
900 177.9 -0,129 1,09
800 232 -0,242 0,9
1000 113,4 -0,098 2,3
1100 88,9 -0,051 1,89
800 221.,5 -0,171 1,5
1000 104,7 -0,047 3,91
800 179,6 -0,264 2,9
1000 111,6 0,011 2,69
900 1413 -0,031 3,28
800 160,5 0 3,89
800 186,6 -0,357 2,71
1000 120,3 0,425 0,3
1100 88,9 0,07 2,68
1000 110,2 -0,077 31
900 141,3 -0,031 3,28
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111

ANEXO 4

Tabela com dados randomizados do Ago C-Mn, com 0,59%C, 0,64%Mn, 0,35%Si,
0,012%S e 0,009%P, com taxa de deformacéo de 2mm s e 20mm s™,

Temp. (°C) Tx Def (mm s '1) Deformacgdo (mm) | Tensdo (MPa) | Incl. Reta Tg
899 2 0,684 178,5742139 -0,085
1199 20 0,608 84,80551471 0,01
1199 2 0,4 41,36854376 -0,012
899 20 0,456 219,9427577 0
1099 2 0,684 59,98438845 0,015
1099 20 0,038 102,7318837 1,766
899 20 0,304 218,5638062 0,17
1199 20 0,038 56,5370098 1,905
899 20 0,418 221,3217091 0
799 2 0,284 228,2164664 0,19
1099 2 0,124 55,84753407 0,345
1199 20 0,38 82,73708752 0,04
799 2 0,404 234,421748 -0,015
999 2 0,204 132,37934 0,07
899 20 0,342 219,9427577 0,07
799 20 0,684 288,2008549 -0,035
1199 2 0,04 27,57902917 0,7
1099 20 0,19 130,3109128 0,245
1099 20 0,38 137,2056701 0,033
1199 2 0,124 35,85273792 0,155
799 20 0,646 288,2008549 -0,03
999 20 0,038 119,9687769 2,057
699 2 0,368 303,3693209 -0,205
999 20 0,342 179,9531654 0,11
699 2 0,4 301,9903694 -0,215
699 2 0,24 317,1588355 -0,328
1099 20 0,646 137,2056701 0,015
799 2 0,552 231,6638451 -0,055
699 2 0,164 330,2588743 -0,445
899 2 0,48 193,7426799 -0,21
1099 2 L 0,516 62,05281564 -0,05
1199 20 0,076 65,50019429 0,34
899 2 0,404 196,5005829 -0,16
699 20 0,494<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>